16.求值
(1)sin2120°+cos180°+tan45°
(2)$sin(-\frac{11π}{6})+tan3π•cos\frac{12π}{5}$.

分析 (1)由條件利用誘導(dǎo)公式化簡所給式子的值,可得結(jié)果.
(2)由條件利用誘導(dǎo)公式化簡所給式子的值,可得結(jié)果.

解答 解:(1)sin2120°+cos180°+tan45°=sin260°+cos180°+tan45°=${(\frac{\sqrt{3}}{2})}^{2}$-1+1=$\frac{3}{4}$.
(2)$sin(-\frac{11π}{6})+tan3π•cos\frac{12π}{5}$=sin$\frac{π}{6}$+0=$\frac{1}{2}$.

點評 本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.x2>0是x>0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列不等式:(1)x2+3>2x(2)a5+b5>a3b2+a2b3(3)a2+b2≥2(a-b-1).其中成立的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和Sn=$\frac{1}{4}$(an-1)(n∈N×
(1)求a1和a2的值.
(2)求證:數(shù)列{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知三個正態(tài)分布密度函數(shù)φi(x)=$\frac{1}{\sqrt{2}π{σ}_{i}}$e${\;}^{-\frac{(x{μ}_{1})^{2}}{2{σ}_{i}^{2}}}$(x∈R,i=1,2,3)的圖象如圖所示,則( 。
A.μ1<μ23,σ12>σ3B.μ1>μ23,σ12<σ3
C.μ12<μ3,σ1<σ23D.μ1<μ23,σ12<σ3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}中,a1=1,若an+1=an+2n+1,n∈N*,則數(shù)列{an}的第k項ak=( 。
A.k2B.k2-k+1C.k2+kD.2k-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若數(shù)列{an}滿足:a1=1,$\frac{{{a_{n+1}}}}{a_n}=2$,n∈N*,則Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈[0,1]時,有f(x)=3x-1,則f(2015)的值等于( 。
A.25B.-2C.2D.-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)集合M={x|x2-1>0},集合N={y|y<3,y∈N*},則M∩N={2}.

查看答案和解析>>

同步練習(xí)冊答案