7.已知等比數(shù)列{an}中,a1=1,a2=-2,則a6+a7+a8+a9=160.

分析 由題意可得數(shù)列的公比q,可得a6+a7+a8+a9=a6(1+q+q2+q3),代值計(jì)算可得.

解答 解:∵等比數(shù)列{an}中,a1=1,a2=-2,
∴公比q=$\frac{{a}_{2}}{{a}_{1}}$=-2,∴a6=1×(-2)5=-32,
∴a6+a7+a8+a9=a6(1+q+q2+q3
=-32(1-2+4-8)=160
故答案為:160

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足acosB+$\frac{1}{2}$b=c.
(Ⅰ) 求角A;
(Ⅱ) 若b,a,c成等比數(shù)列,求證:△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x>0,y>0,若4x2+y2+xy=1,求2x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計(jì)算$\sqrt{1-2sin(2-π)cos(2-π)}$=cos(2-π)-sin(2-π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知x>0,對于任意x有$\frac{x}{{x}^{2}+3x+1}$≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知球的半徑為r,求球的內(nèi)接正四面體的棱長$\frac{2\sqrt{6}}{3}$r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax3+bx+c是定義在R上的奇函數(shù),且函數(shù)f(x)的圖象在x=1處的切線方程為y=3x+2
(1)求函數(shù)f(x)的解析式
(2)若對任意x∈(0,3]都有f(x)≤mx+16成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SA=SD,∠BAD=60°,AB=2,SE=$\sqrt{3}$,SC=$\sqrt{10}$,E是AD中點(diǎn),SF=2FC.
(1)求證:AD⊥平面SBE;
(2)求三棱錐F-BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)y=lnx的反函數(shù)為y=g(x),函數(shù)f(x)=$\frac{{x}^{2}}{e}$•g(x)-$\frac{1}{3}$x3-x2(x∈R)
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間
(Ⅱ)求y=f(x)在[-1,2ln3]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案