9.在△ABC中,M是BC的中點(diǎn),AM=4,點(diǎn)P在AM上,且滿足$\overrightarrow{AP}$=3$\overrightarrow{PM}$,則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的值為( 。
A.-4B.6C.-6D.4

分析 由題意結(jié)合圖象,利用向量的加法和向量的量積運(yùn)算得答案.

解答 解:∵AM=4,又由點(diǎn)P在AM上且滿足$\overrightarrow{AP}$=3$\overrightarrow{PM}$,
∴|$\overrightarrow{AP}$|=3,|$\overrightarrow{PM}$|=1,
∵M(jìn)是BC的中點(diǎn),
∴$\overrightarrow{PB}$+$\overrightarrow{PC}$=2$\overrightarrow{PM}$=$\frac{2}{3}\overrightarrow{AP}$
∴$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=-$\frac{2}{3}{\overrightarrow{AP}}^{2}$=-$\frac{2}{3}$×9=-6,
故選:-6.

點(diǎn)評(píng) 本題考查了向量的加法與向量的數(shù)量積的運(yùn)算,屬基礎(chǔ)題,必須掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某慢性疾病患者,因病到醫(yī)院就醫(yī),醫(yī)生給他開了處方藥(片劑),要求此患者每天早、晚間隔12小時(shí)各服一次藥,每次一片,每片200毫克.假設(shè)該患者的腎臟每12小時(shí)從體內(nèi)大約排出這種藥在其體內(nèi)殘留量的50%,并且醫(yī)生認(rèn)為這種藥在體內(nèi)的殘留量不超過400毫克時(shí)無明顯副作用.若該患者第一天上午8點(diǎn)第一次服藥,則第二天上午8點(diǎn)服完藥時(shí),藥在其體內(nèi)的殘留量是350毫克,若該患者堅(jiān)持長(zhǎng)期服用此藥無明顯副作用(此空填“有”或“無”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)θ為第四象限的角,cosθ=$\frac{4}{5}$,則sin2θ=(  )
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,三棱錐S-ABC,E、F分別在線段AB、AC上,EF∥BC,△ABC、△SEF均是等邊三角形,且平面SEF⊥平面ABC,若BC=4,EF=a,O為EF的中點(diǎn).
(Ⅰ)當(dāng)a=$\frac{\sqrt{3}}{2}$時(shí),求三棱錐S-ABC的體積.
(Ⅱ)a為何值時(shí),BE⊥平面SCO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=4cosθ,θ∈[0,$\frac{π}{2}$].
(I)求C的參數(shù)方程;
(II)若半圓C與圓D:(x-5)2+(y-$\sqrt{3}$)2=m(m是常數(shù),m>0)相切.試求切點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.從2016年3月8日起,進(jìn)行自主招生的高校陸續(xù)公布招生簡(jiǎn)章,某市教育部門為了調(diào)查幾所重點(diǎn)高中的學(xué)生參加今年自主招生的情況,選取了文科生與理科生的同學(xué)作為調(diào)查對(duì)象,進(jìn)行了問卷調(diào)查,其中,“參加自主招生”、“不參加自主招生”和“待定”的人數(shù)如表:
參加不參加待定
文科生120300180
理科生780200420
(1)在所有參加調(diào)查的同學(xué)中,用分層抽樣方法抽取n人,其中“參加自主招生”的同學(xué)共36人,求n的值;
(2)在“不參加自主招生”的同學(xué)中仍然用分層抽樣方法抽取5人,從這5人中任意抽取2人,求至少有一個(gè)是理科生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列命題:
①將函數(shù)y=cos(x+$\frac{3π}{2}$)的圖象上的每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,得到函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象;
②設(shè)隨機(jī)變量ξ-N(3,9),若P(ξ<a)=0.3(a<3)則P(ξ<6-a)=0.7
③(2$\sqrt{x}$-$\frac{1}{x}$)10的二項(xiàng)展開式中含有x-1項(xiàng)的二項(xiàng)式系數(shù)是210;
④已知數(shù)列{an}為等差數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014•(a2012+2a2014+a2016)的值為4π2
其中正確的命題的個(gè)數(shù)為( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若P(x0,y0)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上異于橢圓頂點(diǎn)的一個(gè)動(dòng)點(diǎn),過P(x0,y0)作斜率為-$\frac{{x}_{0}}{{y}_{0}}$$•\frac{^{2}}{{a}^{2}}$的直線l,原點(diǎn)O到直線l的距離為d,F(xiàn)1,F(xiàn)2分別是橢圓C的左右焦點(diǎn).
(1)判定直線l與橢圓的位置關(guān)系
(2)求|PF1|•|PF2|+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.點(diǎn)(0,-1)到直線3x-4y+6=0的距離是( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{9}{5}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案