8.正四棱錐底面邊長為a,側(cè)面積是底面積的2倍,則它的體積是$\frac{\sqrt{3}}{6}{a}^{3}$.

分析 根據(jù)正四棱錐底面邊長為a,側(cè)面積是底面積的2倍,求出側(cè)面的高h(yuǎn)′,可得高,再利用體積公式即可.

解答 解:∵正四棱錐的底面邊長為a,
∴底面面積為a2,
∵側(cè)面積是底面積的2倍,
∴側(cè)面積是2a2,
∴側(cè)面的高h(yuǎn)′=a,
∴高h(yuǎn)=$\sqrt{{a}^{2}-\frac{1}{4}{a}^{2}}$=$\frac{\sqrt{3}}{2}$a,
∴體積為$\frac{1}{3}×{a}^{2}×\frac{\sqrt{3}}{2}a$=$\frac{\sqrt{3}}{6}{a}^{3}$.
故答案為:$\frac{\sqrt{3}}{6}{a}^{3}$.

點(diǎn)評 本題考查空間幾何體的體積,面積問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知方程x2-2(m+2)x+m+2=0有兩個不相等的實(shí)根,則m的取值范圍是( 。
A.m<-2或m>-1B.-2<m<0C.-2<m<-1D.m>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=x2ex的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.兩條平行線4x+3y+1=0與8x+6y-9=0的距離是$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(1)兩個共軛復(fù)數(shù)的差是純虛數(shù);
(2)兩個共軛復(fù)數(shù)的和不一定是實(shí)數(shù);
(3)若復(fù)數(shù)a+bi(a,b∈R)是某一元二次方程的根,則a-bi是也一定是這個方程的根;
(4)若z為虛數(shù),則z的平方根為虛數(shù),
其中正確的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在三棱錐A-BCD中,△ABC與△BCD都是邊長為6的正三角形,平面ABC⊥平面BCD,則該三棱錐的外接球的體積為( 。
A.5$\sqrt{15}$πB.60πC.60$\sqrt{15}$πD.20$\sqrt{15}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.直角三角形邊長分別是3cm,4cm,5cm,繞斜邊旋轉(zhuǎn)一周形成一個幾何體,求這個幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對標(biāo)有不同編號的16件正品和4件次品的產(chǎn)品進(jìn)行檢測,不放回地依次摸出2件.在第一次摸出次品的條件下,第二次也摸到次品的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{95}$C.$\frac{3}{19}$D.$\frac{1}{95}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.由直線x=0,y=0與y=cos2x(x∈[0,$\frac{π}{4}$])所圍成的封閉圖形的面積是( 。
A.$\sqrt{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案