5.二次函數(shù)y=ax2+bx+c圖象的頂點(diǎn)為(1,2),且過點(diǎn)(2,3),求a,b,c的值.

分析 根據(jù)函數(shù)的頂點(diǎn)為(1,2),可設(shè)y=m(x-1)2+2,再代入(2,3)求出m的值,即可求出a,b,c的值.

解答 解:因?yàn)槎魏瘮?shù)的圖象的頂點(diǎn)為(1,2),且過點(diǎn)(2,3),
所示可設(shè)y=m(x-1)2+2,
又因?yàn)檫^點(diǎn)(2,3),
所以3=m+2,
即m=1,
∴y=(x-1)2+2=x2-2x+3=ax2+bx+c,
∴a=1,b=-3,c=2.

點(diǎn)評(píng) 此題考查二次函數(shù)的基本性質(zhì)及其對(duì)稱軸和頂點(diǎn)坐標(biāo),運(yùn)用待定系數(shù)法求拋物線的解析式,同時(shí)也考查了學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x2-5x-6<0},B={x|2x<1},則圖中陰影部分表示的集合是( 。
A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求:函數(shù)f(x)=$\frac{\sqrt{2x-1}}{x-3}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,準(zhǔn)線l與坐標(biāo)軸交于點(diǎn)M,過焦點(diǎn)且斜率為$\frac{\sqrt{2}}{2}$的直線交拋物線于A,B兩點(diǎn),且|AB|=12.
(I)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P為該拋物線上的動(dòng)點(diǎn),求$\frac{|PF|}{|PM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知關(guān)于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$解集為(4,b),則ab=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)=x2+(a-4)x+4-2a,g(x)=2x+1對(duì)任意的x1,x2∈(0,1)都有f(x1)>g(x2),a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x1,x2是函數(shù)f(x)=($\frac{x}{x-2}$)2-$\frac{4x}{x-2}$+1的兩個(gè)零點(diǎn),則x1+x2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|(x+1)(x-2)<0},B={x|0<x<3},則A∪B=(  )
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.寫出命題p:?x∈R,x2+x+1>0的否定:?x0∈R,x02+x0+1≤0,命題p是真命題(填“真”或“假”)

查看答案和解析>>

同步練習(xí)冊(cè)答案