5.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(1)求證:B1E⊥AD1;
(2)若E為CD的中點,P是AA1的中點,求證DP∥平面B1AE.

分析 (1)以A為原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,利用向量法能證明B1E⊥AD1
(2)求出$\overrightarrow{DP}$和平面B1AE的法向量,利用向量法能證明DP∥平面B1AE.

解答 證明:(1)以A為原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,
∵AA1=AD=a,E為CD上任意一點,設(shè)DE=t,DC=2m,0≤t≤2m,
∴B1(2m,0,a),E(m,a,0),A(0,0,0),D1(0,a,a),
$\overrightarrow{{B}_{1}E}$=(-m,a,-a),$\overrightarrow{A{D}_{1}}$=(0,a,a),
$\overrightarrow{{B}_{1}E}$•$\overrightarrow{A{D}_{1}}$=0+a2-a2=0,
∴B1E⊥AD1
(2)P(0,0,$\frac{a}{2}$),D(0,a,0),B1(2m,0,a),A(0,0,0),E(m,a,0),
$\overrightarrow{DP}$=(0,-a,$\frac{a}{2}$),$\overrightarrow{A{B}_{1}}$=(2m,0,a),$\overrightarrow{AE}$=(m,a,0),
設(shè)平面B1AE的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{B}_{1}}=2mx+az=0}\\{\overrightarrow{m}•\overrightarrow{AE}=mx+ay=0}\end{array}\right.$,
取z=2,得$\overrightarrow{m}$=(-$\frac{a}{m}$,1,2),
∵$\overrightarrow{DP}•\overrightarrow{m}$=0-a+a=0,且DP?平面B1AE,
∴DP∥平面B1AE.

點評 本題考查異面直線垂直的證明,考查線面平行的證明,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點A(0,1),B(3,2),向量$\overrightarrow{AC}$=(-4,-3),則向量$\overrightarrow{BC}$的坐標為(-7,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.假知生化危機爆發(fā),有10個人被困在超市內(nèi),超市內(nèi)除了固定的食物,每天還有軍方空投定量的食物,超市內(nèi)的人堅持22天之后斷糧,如過被困者數(shù)量是16人,那么他們在同樣的悄況下卻只能堅持10天.
請問:如果被困者是25人,他們可以堅持多少天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題:
①已知m,n表示兩條不同的直線,α,β表示兩個不同的平面,并且m⊥α,n?β,則“α⊥β”是“m∥n”的必要不充分條件;  
②不存在x∈(0,1),使不等式成立log2x<log3x; 
③“若am2<bm2,則a<b”的逆命題為真命題;
④?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù).
正確的命題序號是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)命題p:?x0∈(0,+∞),${3^{x_0}}<x_0^3$,則命題p的否定為(  )
A.?x∈(0,+∞),3x<x3B.?x∈(0,+∞),3x>x3C.?x∈(0,+∞),3x≥x3D.?x∈(0,+∞),3x≥x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則z=3x-y的最大值是( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某集成電路由2個不同的電子元件組成.每個電子元件出現(xiàn)故障的概率分別為$\frac{1}{6},\frac{1}{10}$.兩個電子元件能否正常工作相互獨立,只有兩個電子元件都正常工作該集成電路才能正常工作.
(1)求該集成電路不能正常工作的概率;
(2)如果該集成電路能正常工作,則出售該集成電路可獲利40元;如果該集成電路不能正常工作,則每件虧損80元(即獲利-80元).已知一包裝箱中有4塊集成電路,記該箱集成電路獲利x元,求x的分布列,并求出均值E(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列有關(guān)命題的說法中,正確的是( 。
A.?x0∈R,使得${3^{x_0}}≤0$
B.“$x=\frac{π}{6}$”是“$cosx=\frac{{\sqrt{3}}}{2}$”的必要不充分條件
C.?x∈R+,lgx>0
D.“x=1”是“x≥1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=1+log${\;}_{\frac{1}{2}}$x,則f(-4)=1.

查看答案和解析>>

同步練習(xí)冊答案