5.小王參加網(wǎng)購后,快遞員電話通知于本周五早上7:30-8:30送貨到家,如果小王這一天離開家的時(shí)間為早上8:00-9:00,那么在他走之前拿到郵件的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{7}{8}$

分析 設(shè)快遞員到達(dá)的時(shí)間為x,小王離家去工作的時(shí)間為y,則(x,y)可以看成平面中的點(diǎn),根據(jù)幾何概型概率公式得到結(jié)果.

解答 解:設(shè)快遞員到達(dá)的時(shí)間為x,小王離家去工作的時(shí)間為y,
則滿足$\left\{\begin{array}{l}{7.5≤x≤8.5}\\{8≤y≤9}\end{array}\right.$
記在他走之前拿到郵件的事件A;則滿足x<y,
以橫坐標(biāo)表示報(bào)紙送到時(shí)間,以縱坐標(biāo)表示小明爸爸離家時(shí)間,建立平面直角坐標(biāo)系,
則對(duì)應(yīng)區(qū)域的概率P=$\frac{1-\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1}$=1-$\frac{1}{8}$=$\frac{7}{8}$,
故選:D

點(diǎn)評(píng) 本題主要考查幾何概型的概率計(jì)算,對(duì)于這樣的問題,一般要通過把試驗(yàn)發(fā)生包含的事件所對(duì)應(yīng)的區(qū)域求出,根據(jù)集合對(duì)應(yīng)的圖形面積,用面積的比值得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,AD=3,則BD的長為( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A、B、C對(duì)應(yīng)的三邊長分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(2-i)=10+5i,則z等于( 。
A.3+4iB.3-4iC.-3+4iD.-3-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)$\frac{1}{2}$-(a+$\frac{1}{2}$)i(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線x+y=0上,則實(shí)數(shù)a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在等腰梯形CDFE中,A,B分別為底邊DF,CE的中點(diǎn),AD=2AB=2BC=2.沿AE將△AEF折起,使二面角F-AE-C為直二面角,連接CF、DF.
(Ⅰ)證明:平面ACF⊥平面AEF;
(Ⅱ)求點(diǎn)D到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.為了估計(jì)某水池中魚的尾數(shù),先從水池中捕出2000尾魚,并給每尾魚做上標(biāo)記(不影響存活),然后放回水池,經(jīng)過適當(dāng)?shù)臅r(shí)間,再從水池中捕出500尾魚,其中有標(biāo)記的魚為40尾,根據(jù)上述數(shù)據(jù)估計(jì)該水池中魚的數(shù)量約為25000尾.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知某幾何體的三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,則該幾何體的體積為$\frac{160}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)F1,F(xiàn)2距離之和為4$\sqrt{2}$,離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l的斜率為$\frac{1}{2}$,直線l與橢圓C交于A,B兩點(diǎn).點(diǎn)P(2,1)為橢圓上一點(diǎn),求△PAB的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案