10.如圖,在等腰梯形CDFE中,A,B分別為底邊DF,CE的中點(diǎn),AD=2AB=2BC=2.沿AE將△AEF折起,使二面角F-AE-C為直二面角,連接CF、DF.
(Ⅰ)證明:平面ACF⊥平面AEF;
(Ⅱ)求點(diǎn)D到平面ACF的距離.

分析 (Ⅰ)證明EF⊥EA;EF⊥AC;推出平面AEF⊥平面AECD,得到AC⊥EF,AC⊥AE,證明AC⊥平面AEF,然后證明平面ACF⊥平面AEF.
(Ⅱ)點(diǎn)D到平面ACF的距離即三棱錐D-ACF的高,利用VD-ACV=VV-ACD求解即可.

解答 解:(Ⅰ)在等腰梯形CSFE中,由已知條件可得,
CD=AC=AE=EF=$\sqrt{2}$,AF=AD=2,
所以,AE2+EF2=AF2,∴EF⊥EA;同理可證,EF⊥AC;…(2分)
在四棱錐F-AECD中,
∵二面角F-AE-C為直二面角,
∴平面AEF⊥平面AECD,
∴EF⊥平面AECD,…(4分)
∵AC?平面AECD,
∴AC⊥EF,又∵AC⊥AE,
∴AC⊥平面AEF,
∴平面ACF⊥平面AEF.…(6分)
(Ⅱ)點(diǎn)D到平面ACF的距離即三棱錐D-ACF的高,
所以VD-ACV=VV-ACD             ….(8分)
因?yàn)锳B=BC=1,所以AC=$\sqrt{2}$,AF=2且AC⊥AF,
所以S△ACV=$\frac{1}{2}$×$\sqrt{2}×2$=$\sqrt{2}$.
又因?yàn)锳C=CD=$\sqrt{2}$且AC⊥CD,
所以S△ACD=$\frac{1}{2}±\sqrt{2}×\sqrt{2}=1$,$EF=\sqrt{2}$….(10分)
所以$\frac{1}{3}×\sqrt{2}×d=\frac{1}{3}×1×\sqrt{2}$ 即
d=1….(12分)

點(diǎn)評(píng) 本題看直線與平面垂直,平面與平面垂直的判定定理的應(yīng)用,曹休墓距離的應(yīng)用,考查邏輯推理能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法:
①設(shè)某大學(xué)的女生體重y(kg)與身高x(cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的線性回歸方程為$\stackrel{∧}{y}$=0.85x-85.71,則若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg;
②命題“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
③相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)性越弱;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則有99%的把握認(rèn)為這兩個(gè)變量間有關(guān)系;
⑤已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤5)=0.79,則P(ξ≤-1)=0.21;
其中錯(cuò)誤的個(gè)數(shù)是( 。
本題可參考獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:?x0∈R,x02+2x0+1≤0,則¬p為( 。
A.?x0∈R,x02+2x0+1>0B.?x∈R,x2+2x+1≤0
C.?x∈R,x2+2x+1≥0D.?x∈R,x2+2x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=cos2(x+$\frac{π}{2}$)的單調(diào)遞增區(qū)間( 。
A.(kπ,kπ+$\frac{π}{2}$)k∈ZB.(kπ+$\frac{π}{2}$,kπ+π)k∈ZC.(2kπ,2kπ+π)k∈ZD.(2kπ,2kπ+2π)k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.小王參加網(wǎng)購(gòu)后,快遞員電話通知于本周五早上7:30-8:30送貨到家,如果小王這一天離開(kāi)家的時(shí)間為早上8:00-9:00,那么在他走之前拿到郵件的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),a為雙曲線虛軸的一個(gè)頂點(diǎn),過(guò)點(diǎn)F、A的直線與雙曲線的一條漸近線在y軸右側(cè)的交點(diǎn)為B,若$\overrightarrow{AB}$=($\sqrt{2}$-1)$\overrightarrow{AF}$,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合A={x∈N|y=ln(2-x)},B={x|x(x-1)≤0},則A∩B=( 。
A.{x|x≥1}B.{x|1≤x<2}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)幾何體的三視圖及尺寸如圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的體積為( 。
A.$\frac{8\sqrt{2}π}{3}$B.$\frac{16\sqrt{2}π}{3}$C.4$\sqrt{2}π$D.8$\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合 A={x∈R|x-1≥0},B={x∈R||x|≤2},則A∩B=(  )
A.{x∈R|-2≤x≤2}B.{x∈R|-1≤x≤2}C.{x∈R|1≤x≤2}D.{x∈R|-1≤x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案