17.若f(x)=ax3+3x2+2在x=1處的切線與直線x+3y+3=0垂直,則實(shí)數(shù)a的值為( 。
A.1B.-1C.-2D.-8

分析 求出原函數(shù)的導(dǎo)函數(shù),得到f(x)在x=1處的導(dǎo)數(shù),再由f(x)在x=1處的切線與直線x+3y+3=0垂直,得到
f(x)在x=1處的導(dǎo)數(shù)值,從而求得a的值.

解答 解:由f(x)=ax3+3x2+2,得f′(x)=3ax2+6x,
∴f′(1)=3a+6,即f(x)在x=1處的切線的斜率為3a+6,
∵f(x)在x=1處的切線與直線x+3y+3=0垂直,
∴3a+6=3,即a=-1.
故選:B.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求曲線上某點(diǎn)的切線方程,考查了兩直線垂直于斜率之間的關(guān)系,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)之和為Sn=pn2-2n+q(p,q是常數(shù),n∈N*
(1)求q的值;
(2)若等差數(shù)列{an}的公差d=2,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知奇函數(shù)f(x)=$\frac{1+m•{2}^{x}}{1+{2}^{x}}$的定義域?yàn)閇-1,1],則m=-1;f(x)的值域?yàn)閇-$\frac{1}{3}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x2-1=0},則下列式子表示正確的有( 。
①1∈A②{1}∈A③∅⊆A④{1,-1}⊆A.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知已知數(shù)列{an}的前n項(xiàng)的和為Sn=n2+n+3,則這個(gè)數(shù)列的通項(xiàng)公式為an=$\left\{\begin{array}{l}{5,n=1}\\{2n,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=(x+1)(x2-6x)+9x+9在其定義域內(nèi)( 。
A.沒有零點(diǎn)B.有且僅有一個(gè)零點(diǎn)
C.有且僅有兩個(gè)D.有且僅有三個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知Rt△ABC中,∠C=90°,AC=3,BC=4,則$\overrightarrow{AB}$$•\overrightarrow{AC}$+$\overrightarrow{AC}$$•\overrightarrow{BC}$+$\overrightarrow{BC}•\overrightarrow{AB}$=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)在R上是奇函數(shù),若當(dāng)x>0時(shí),有f(x)=log2(x+1),則f(-3)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知由整數(shù)組成的數(shù)列{an}各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且a1=a,2Sn=anan+1
(1)求a2的值;
(2)求{an}的通項(xiàng)公式;
(3)若n=15時(shí),Sn取得最小值,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案