13.關(guān)于x的方程x2-(2m-1)x+m2-1=0的兩實數(shù)根為x1,x2,且x12+x22=3,則m=0.

分析 由△=(2m-1)2-4(m2-1)≥0得m≤$\frac{5}{4}$;再由韋達定理求解即可.

解答 解:∵方程x2-(2m-1)x+m2-1=0有兩個實數(shù)根,
∴△=(2m-1)2-4(m2-1)≥0,
解得,m≤$\frac{5}{4}$;
x1+x2=2m-1,x1x2=m2-1,
故x12+x22=(x1+x22-2(m2-1)=3,
解得,m=0或m=2(舍去);
故答案為:0.

點評 本題考查了二次方程的根與系數(shù)的關(guān)系應(yīng)用,同時考查了學(xué)生的化簡運算的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\frac{2}{x}$在區(qū)間(0,+∞)上是減函數(shù).(填“增”或“減”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|2x>$\frac{1}{2}$},B={x|lgx>0},則A∩(∁RB)=( 。
A.(1,+∞)B.(0,1]C.(-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“x>5”是“x2-4x-5>0”的充分不必要條件;
③“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”.
其中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx-2{sin^2}x+2$.
(1)求f(x)最小正周期和單調(diào)區(qū)間;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)i是虛數(shù)單位,則$\frac{{{{({1+i})}^3}}}{{{{({1-i})}^2}}}$=-1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中真命題是( 。
A.若m⊥α,m?β,則α⊥β
B.若m?α,n?α,m∥β,n∥β,則α∥β
C.若α∩β=m,n∥m,則n∥α且n∥β
D.若m?α,n?α,m,n是異面直線,那么n與α相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x、y滿則$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,則a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,已知曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,
直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2-t}\\{y=m+t}\end{array}\right.$(t為參數(shù)),曲線C上至少3個點到直線l的距離等于$\frac{\sqrt{2}}{2}$.
(I)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案