已知等比數(shù)列{an}中,其前n項(xiàng)和Sn=3n+k,則k的值為( 。
A、-1B、1C、0D、3
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:先根據(jù)等比數(shù)列的前n項(xiàng)的和分別求得a1,a2,a3的值進(jìn)而利用等比數(shù)列的等比中項(xiàng)求得k.
解答: 解:∵等比數(shù)列{an}中,Sn=3n+k,
∴a1=31+k=3+k,a2=S2-S1=6,a3=S3-S2=18,
∴(3+k)•18=36,∴k=-1.
故選:A.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的前n項(xiàng)的和,考查等比數(shù)列的等比中項(xiàng),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin15°cos45°-sin75°sin45°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos42θ-sin42θ的最小正周期是( 。
A、2π
B、4π
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a1=2,a2+a4=8,則a3+a7+a8=( 。
A、15B、18C、21D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知不等式(2a-b-c)(a-c)•2n≥(a-b)(b-c)(t•2n+1)對(duì)任意a>b>c及n∈N恒成立,則實(shí)數(shù)t的取值范圍為 (  )
A、(-∞,4
2
-1]
B、(-∞,2+2
2
]
C、[4
2
-1,+∞)
D、[2+2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上奇函數(shù)f(x)滿足f(x)=f(x+5),且f(1)=1,則f(4)=( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l的傾斜角為60°,則直線l的斜率是( 。
A、
1
2
B、
3
2
C、-
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若2sinA=sinC,a2,c2,b2成等差數(shù)列,則B=( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+
3
2
)+
2
x
,g(x)=
1
x2-1
+a;
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程g(x)=ln(x2+1)有4個(gè)不同的實(shí)根,求a的范圍?
(3)是否存在正數(shù)b,使得關(guān)于x的方程f(x)=blnx有兩個(gè)不相等的實(shí)根?如果存在,求b滿足的條件,如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案