19.現(xiàn)用系統(tǒng)抽樣方法從已編號(1-60)的60枚新型導彈中,隨機抽取6枚進行試驗,則所選取的6枚導彈的編號可能是( 。
A.5,10,15,20,25,30B.2,4,8,16,32,48
C.5,15,25,35,45,55D.1,12,34,47,51,60

分析 由系統(tǒng)抽樣的特點知,將總體分成均衡的若干部分指的是將總體分段,分段的間隔要求相等,這時間隔一般為總體的個數(shù)除以樣本容量.從所給的四個選項中可以看出間隔相等且組距為10的一組數(shù)據(jù)是由系統(tǒng)抽樣得到的.

解答 解:從60枚某型導彈中隨機抽取6枚,
采用系統(tǒng)抽樣間隔應為$\frac{60}{6}$=10,
只有B答案中導彈的編號間隔為10,
故選:C.

點評 一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡的若干部分,然后按照預先制定的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},則集合A所表示圖形的面積為( 。
A.1+πB.2C.2+πD.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)滿足:對任意x1,x2∈R(x1≠x2),均有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,e為自然對數(shù)的底,則( 。
A.f($-\frac{π}{2}$)<f($\sqrt{2}$)<f(e)B.f(e)<f($-\frac{π}{2}$)<f($\sqrt{2}$)C.f(e)<f($\sqrt{2}$)<f($-\frac{π}{2}$)D.f($\sqrt{2}$)<f($-\frac{π}{2}$)<f(e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a-3<x<a+3}.
(Ⅰ)求A∩∁UB;
(Ⅱ)若M∪∁UB=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知直線l:x-y+m=0(m是常數(shù)),曲線C:x|x|-y|y|=1,若l與C有兩個不同的交點,則m的取值范圍是(-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了鼓勵市民節(jié)約用水,太原市對已實施“一戶一表、水表出戶”的居民生活用水的收費標準規(guī)定如下:一級水量每戶每月9立方米及以下,每立方米銷售價格為2.30元;二級水量每戶每月9立方米以上至13.5立方米,每立方米銷售價格為4.60元;三級水量每戶每月13.5立方米及以上,每立方米銷售價格為6.90元,
(1)寫出太原市居民每戶每月生活用水費用y(單位:元)與其用水量J(單位:立方米)之間的關系式;
(2)如圖是按上述規(guī)定計算太原市居民每戶每月生活用水費用的程序框圖,但步驟沒有全部給出,請將其補充完整(將答案寫在下列橫線上).
①x≤9②y=6.9x③y=2.3x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,邊長為2的正方形ABCD中,點E、F分別  是AB、BC的中點,將△ADE,△EBF,△FCD分別沿DE,EF,F(xiàn)D折起,使得A、B、C三點重合于點A′,若四面體A′EFD的四個頂點在同一個球面上,則該球的表面積為( 。
A.B.C.11πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,內角A,B,C的對邊分別是a,b,c,且滿足bcosC=a,則△ABC的形狀是(  )
A.等邊三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.給出下列命題:
(1)命題p:;菱形的對角線互相垂直平分,命題q:菱形的對角線相等;則p∨q是假命題
(2)命題“若x2-4x+3=0,則x=3”的逆否命題為真命題
(3)“1<x<3”是“x2-4x+3<0”的必要不充分條件
(4)若命題p:?x∈R,x2+4x+5≠0,則?p:$?{x_0}∈R,{x_0}^2+4{x_0}+5=0$.
其中敘述正確的是(4).(填上所有正確命題的序號)

查看答案和解析>>

同步練習冊答案