5.“x≥1”是“l(fā)gx≥1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 lgx≥1,解得x≥10.即可判斷出.

解答 解:lgx≥1,解得x≥10.
∴“x≥1”是“l(fā)gx≥1”的必要不充分條件.
故選:B.

點評 本題考查了不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若a=2${\;}^{-\frac{1}{3}}$,b=$\frac{1}{\sqrt{2}}$,求a${\;}^{-\frac{1}{2}}$•b$\sqrt{a^{2}}$•($\sqrt{{a}^{3}}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的各項都為自然數(shù),前n項和為Sn,且存在整數(shù)λ,使得對任意正整數(shù)n都有Sn=(1+λ)an-λ恒成立.
(1)求λ值,使得數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}為等比數(shù)列,此時存在正整數(shù)k,當(dāng)1≤k<j時,有$\underset{\stackrel{i}{∑}}{i=k}$ai=2016,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)的圖象的相鄰兩對稱軸間的距離為$\frac{π}{2}$,則當(dāng)x∈[-$\frac{π}{2}$,0]時,f(x)的最大值和單調(diào)增區(qū)間分別為( 。
A.1,[-$\frac{π}{2}$,-$\frac{π}{6}$]B.1,[-$\frac{π}{2}$,-$\frac{π}{12}$]C.$\sqrt{3}$,[-$\frac{π}{6}$,0]D.$\sqrt{3}$,[-$\frac{π}{12}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.以點(-2,4)為圓心的圓,若有一條直徑的兩端分別在兩坐標軸上,則該圓的方程是( 。
A.(x+2)2+(y-4)2=10B.(x+2)2+(y-4)2=20C.(x-2)2+(y+4)2=10D.(x-2)2+(y+4)2=20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC的三個內(nèi)角A,B,C,若$\frac{\sqrt{3}cosA+sinA}{\sqrt{3}sinA-cosA}$=tan(-$\frac{7}{12}$π),則2cosB+sin2C的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x+$\frac{5}{2}$)=-$\frac{1}{f(x)}$,當(dāng)x∈[-$\frac{5}{2}$,0]時,f(x)=x(x+$\frac{5}{2}$),則f(2016)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知兩點A(1,1),B(5,4),若向量$\overrightarrow{a}$=(x,4)與$\overrightarrow{AB}$垂直,則實數(shù)x=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)z滿足z=1-$\frac{1}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的模為( 。
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案