6.已知直線l過雙曲線$\frac{{x}^{2}}{4}$-y2=1的右焦點,且與雙曲線僅有一個公共交點,求直線l的方程.

分析 直接利用雙曲線的簡單性質(zhì)求解即可.

解答 解:雙曲線$\frac{{x}^{2}}{4}$-y2=1的右焦點($\sqrt{5}$,0),雙曲線的漸近線方程為:y=$±\frac{1}{2}x$,
直線l過雙曲線$\frac{{x}^{2}}{4}$-y2=1的右焦點,且與雙曲線僅有一個公共交點,直線l的方程:y=$±\frac{1}{2}(x-\sqrt{5})$.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}滿足an+1=an+1(n∈N*),且a1=1,則$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_{99}}{a_{100}}}}$=$\frac{99}{100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正四棱臺ABCD-A1B1C1D1中,上底面A1B1C1D1邊長為1,下底面ABCD邊長為2,側(cè)棱與底面所成的角為60°,則異面直線AD1與B1C所成角的余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.空間四點中,無三點共線是四點共面的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正項數(shù)列{an}的前n項和為Sn,且滿足Sn2=(n2-n)Sn+n3
(1)求an;
(2)記數(shù)列{$\frac{1}{n{S}_{n}}$}的前n項和為Tn,用數(shù)學(xué)歸納法證明:Tn≤$\frac{5}{4}$-$\frac{1}{2n(n+1)}$對一切n∈N*都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,三個內(nèi)角A,B,C所對的邊為a,b,c,且a=4.
(1)若sin2A-sinBsinC=0,sinA>cosA,求sinA的取值范圍;
(2)若a=2bcosC,(2b-c)cosA-acosC=0,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=3sin($\frac{k}{5}x$+$\frac{π}{3}$)(k>0,k∈Z)有一條對稱軸x=$\frac{π}{6}$,且在任意兩整數(shù)間至少出現(xiàn)一次最大值和最小值,求k的最小取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,3],?x2∈[2,3],使得f(x1)≥g(x2),則實數(shù)a的取值范圍是(  )
A.a≤1B.a≥1C.a≤0D.a≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有A、B、C、D、E五位學(xué)生的數(shù)學(xué)成績x與物理成績y(單位:分)如下表:
x8075706560
y7066686462
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若學(xué)生F的數(shù)學(xué)成績?yōu)?0分,試根據(jù)(1)求出的線性回歸方程,預(yù)測其物理成績(保留整數(shù))
(參考數(shù)值:80×70+75×66+70×68+65×64+60×62=23190$8{0^2}+7{5^2}+7{0^2}+6{5^2}+6{0^2}=24750,\hat b=\frac{{\sum_{i=1}^5{x_i}{y_i}-n\bar x\bar y}}{{\sum_{i=1}^5x_i^2-n{{\bar x}^2}}},\hat a$=$\overline{y}$$-\hat b$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案