14.已知扇形的半徑為3cm,圓心角為2弧度,則扇形的面積為9cm2

分析 利用扇形的面積公式即可計(jì)算得解.

解答 解:由題意可得圓心角大小為α=2(rad),半徑為r=3,
則扇形的面積為S=$\frac{1}{2}$r2α=$\frac{1}{2}×{3}^{2}×2$=9cm2
故答案為:9.

點(diǎn)評 本題主要考查了扇形的面積公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\frac{1}{{2}^{x}+1}$的值域是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x2+1是定義在閉區(qū)間[-1,a]上的偶函數(shù),則f(a)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在△ABC中,設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)為P,若$\overrightarrow{AP}=m\vec a+n\vec b$,則m、n對應(yīng)的值為 ( 。
A.$\frac{2}{7},\frac{4}{7}$B.$\frac{1}{2},\frac{1}{4}$C.$\frac{1}{6},\frac{2}{7}$D.$\frac{1}{6},\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線l經(jīng)過點(diǎn)A(t,0),且與曲線y=x2相切,若直線l的傾斜角為45°,則t=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O為坐標(biāo)原點(diǎn),A,B兩點(diǎn)的坐標(biāo)均滿足不等式組$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,設(shè)$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為θ,則sinθ的最大值為( 。
A.$\frac{1}{2}$B.$\frac{4\sqrt{65}}{65}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象:
①關(guān)于點(diǎn)($\frac{π}{3}$,0)對稱;
②關(guān)于直線x=$\frac{π}{4}$對稱;
③關(guān)于點(diǎn)($\frac{π}{4}$,0)對稱;
④關(guān)于直線x=$\frac{π}{12}$對稱.
正確的序號為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin(-$\frac{9π}{2}$)的值為( 。
A.1B.-1C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的通項(xiàng)公式為an=sin$\frac{nπ}{2}$-kn,數(shù)列{an}的前n項(xiàng)和為Sn,且{Sn}為遞減數(shù)列,則實(shí)數(shù)k的取值范圍為( 。
A.k>1B.$k>\frac{1}{3}$C.$k>\frac{1}{5}$D.$k>\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案