9.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(mod m),例如10≡4(mod 6).下面程序框圖的算法源于我國古代聞名中外的(中國剩余定理),執(zhí)行該程序框圖,則輸出的n等于( 。
A.17B.16C.15D.13

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量n的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出同時(shí)滿足條件:
①被3除余2,
②被5除余2,
即被15除余2,最小兩位數(shù),
故輸出的n為17,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=cos(4x-$\frac{π}{3}$)+2cos2(2x),將函數(shù)y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將所得函數(shù)圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的一個(gè)單調(diào)遞增區(qū)間為( 。
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,$\frac{π}{4}$]C.[$\frac{π}{6}$,$\frac{2π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{-i}{1-2i}(i$是虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A.$-\frac{2}{5}+\frac{i}{5}$B.$-\frac{2}{5}-\frac{i}{5}$C.$\frac{2}{5}-\frac{i}{5}$D.$\frac{2}{5}+\frac{i}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.執(zhí)行如圖程序框圖,若輸入n的值為9,則輸出的S值為1067.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點(diǎn)A,B分別為圓M:x2+(y-3)2=1與圓N:(x-3)2+(y-8)2=4上的動(dòng)點(diǎn),點(diǎn)C在直線x+y=0上運(yùn)動(dòng),則|AC|+|BC|的最小值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知(1+ax)(1+x)5的展開式中x3的系數(shù)為5,則a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{lg(x+1),x>0}\end{array}\right.$若f(2x)>f(x2-3),則實(shí)數(shù)x的取值范圍是( 。
A.(-1,3)B.(-∞,-1)∪(3,+∞)C.(-∞,-3)∪(1,+∞)D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知f(x)=ex,g(x)=x.
(1)求y=f(x)•g(x)在x=1處的切線方程;
(2)試比較ef(x-2)>與g(x)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.i是虛數(shù)單位,復(fù)數(shù)$\frac{2i}{1+i}$的虛部為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案