分析 (1)由分母不為零求出函數(shù)的定義域;
(2)代入函數(shù)的解析式化簡f(a)+f($\frac{1}{a}$)即可;
(3)由奇偶函數(shù)的定義判斷f(x)是偶函數(shù),由(2)的結(jié)論求出f($\frac{1}{2}$)+f($\frac{1}{3}$)+f(-2)+f(-3)的值.
解答 解:(1)由1-x2≠0得,x≠±1,
所以函數(shù)的定義域是{x|x≠±1};
(2)f(a)+f($\frac{1}{a}$)=$\frac{1+{a}^{2}}{1-{a}^{2}}$+$\frac{1+\frac{1}{{a}^{2}}}{1-\frac{1}{{a}^{2}}}$
=$\frac{1+{a}^{2}}{1-{a}^{2}}$+$\frac{{a}^{2}+1}{{a}^{2}-1}$=0;
(3)由(1)可得函數(shù)的定義域關(guān)于原點(diǎn)對稱,
因?yàn)閒(-x)=$\frac{1+{(-x)}^{2}}{1-{(-x)}^{2}}$=$\frac{1+{x}^{2}}{1-{x}^{2}}$=f(x),
所以函數(shù)f(x)是偶函數(shù),
則f($\frac{1}{2}$)+f($\frac{1}{3}$)+f(-2)+f(-3)
=f($\frac{1}{2}$)+f($\frac{1}{3}$)+f(2)+f(3)
=0.
點(diǎn)評 本題考查函數(shù)的定義域、奇偶性的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | $(0,\frac{{\sqrt{2}}}{2})$ | D. | $(\frac{{\sqrt{2}}}{2},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (2,+∞) | C. | [2,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com