分析 化簡(jiǎn)函數(shù)的表達(dá)式,利用基本不等式求出左側(cè)的最小值,即可得出結(jié)論.
解答 解:對(duì)任意的x>1,$\frac{{x}^{2}+3}{x-1}$=x-1+$\frac{4}{x-1}$+2≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+2=6,當(dāng)且僅當(dāng)x=3時(shí)等號(hào)成立.
∴($\frac{{x}^{2}+3}{x-1}$)min=6,
對(duì)任意的x>1,$\frac{{x}^{2}+3}{x-1}$≥a恒成立,∴a≤6,
a的最大值是:6.
故答案為:6
點(diǎn)評(píng) 本題考查基本不等式在最值中的應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | [1,+∞) | C. | [-2,+∞) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,$x+\frac{1}{x}>a$成立 | B. | ?x∈R,$x+\frac{1}{x}<a$成立 | C. | ?x∈R,$x+\frac{1}{x}≥a$成立 | D. | ?x∈R,$x+\frac{1}{x}≤a$成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com