1.若對(duì)任意的x>1,$\frac{{x}^{2}+3}{x-1}$≥a恒成立,則a的最大值是6.

分析 化簡(jiǎn)函數(shù)的表達(dá)式,利用基本不等式求出左側(cè)的最小值,即可得出結(jié)論.

解答 解:對(duì)任意的x>1,$\frac{{x}^{2}+3}{x-1}$=x-1+$\frac{4}{x-1}$+2≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+2=6,當(dāng)且僅當(dāng)x=3時(shí)等號(hào)成立.
∴($\frac{{x}^{2}+3}{x-1}$)min=6,
對(duì)任意的x>1,$\frac{{x}^{2}+3}{x-1}$≥a恒成立,∴a≤6,
a的最大值是:6.
故答案為:6

點(diǎn)評(píng) 本題考查基本不等式在最值中的應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.從分別寫(xiě)著1,2,3,4,5的5張卡片中,任意抽2次,每次抽1張,第1次抽出的卡片,記下數(shù)字放回后再抽第2次,求
(1)2次抽出的卡片上的數(shù)都是偶數(shù)的概率;
(2)2次抽出的卡片上的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若關(guān)于x的不等式x2-2ax-a2≤0的解集為A,且[0,1]⊆A,則a的取值范圍是{a|$a≥\sqrt{2}-1或a≤-\sqrt{2}-1$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,求:
(1)求它的定義域;
(2)f(a)+f($\frac{1}{a}$)的值.
(3)f($\frac{1}{2}$)+f($\frac{1}{3}$)+f(-2)+f(-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.滿足不等式組$\left\{{\begin{array}{l}{3x-2y-2>0}\\{x+4y+4>0}\\{2x+y-6<0}\end{array}}\right.$任意一點(diǎn)(x,y)都使不等式x+y+m≥0恒成立,則實(shí)數(shù)m的取值范圍為(  )
A.(1,+∞)B.[1,+∞)C.[-2,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.命題P:?x∈R,$x+\frac{1}{x}<a$成立,則P的否定為( 。
A.?x∈R,$x+\frac{1}{x}>a$成立B.?x∈R,$x+\frac{1}{x}<a$成立C.?x∈R,$x+\frac{1}{x}≥a$成立D.?x∈R,$x+\frac{1}{x}≤a$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=f(x),對(duì)于任意的x$∈[0,\frac{π}{2})$滿足f′(x)cosx+f(x)sinx>0,則下列不等式中成立的有②③④.
①$\sqrt{2}f(\frac{π}{3})$<f($\frac{π}{4}$) ②$\sqrt{2}$f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{4}$) ③f(0)$<\sqrt{2}$f($\frac{π}{4}$) ④f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若非零函數(shù)f(x)對(duì)任意實(shí)數(shù)a,b均有f(a+b)=f(a)•f(b),且當(dāng)x<0時(shí),f(x)>1.
(1)求f(0)的值;
(2)求證:f(x)>0對(duì)一切實(shí)數(shù)x∈R都成立;
(3)當(dāng)f(4)=$\frac{1}{16}$時(shí),解不等式f(x-3)•f(5-x2)≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若關(guān)于x的方程|lnx|-$\frac{a}{x}$=0恰有3個(gè)根,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案