17.當(dāng)0<x≤$\frac{1}{2}$時,4x<logax,則實(shí)數(shù)a的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$(0,\frac{{\sqrt{2}}}{2})$D.$(\frac{{\sqrt{2}}}{2},1)$

分析 當(dāng)0<x≤$\frac{1}{2}$時,不等式4x<logax恒成立,則在0<x≤$\frac{1}{2}$時,y=logax的圖象恒在y=4x的圖象的上方,在同一坐標(biāo)系中,分析畫出指數(shù)和對數(shù)函數(shù)的圖象,分析可得答案.

解答 解:當(dāng)0<x≤$\frac{1}{2}$時,函數(shù)y=4x的圖象如下圖所示:
若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方,
∵y=logax的圖象與y=4x的圖象交于($\frac{1}{2}$,2)點(diǎn)時,a=$\frac{\sqrt{2}}{2}$,
故y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足0<a<$\frac{\sqrt{2}}{2}$.
故選:C.

點(diǎn)評 本題考查指數(shù)不等式和對數(shù)不等式的解法,其中熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的圖象與性質(zhì)是解答本題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式|x|<3的解是-3<x<3
不等式|x|>6的解是x>6或x<-6
不等式|x-4|<3的解是1<x<7
不等式|x+3|≥9的解是x≥6或x≤-12
不等式|x+2|<7的解是-9<x<5
不等式|2x+3|>1的解是x>-1或x<-2
不等式|x|<2的整數(shù)解是-2<x<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a$、$\overrightarrow b$滿足$|\overrightarrow a|=1$,$\overrightarrow b=(-2,3)$,且$λ\overrightarrow a+\overrightarrow b=\overrightarrow 0$(λ∈R),則|λ|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(2x+1)的定義域為[3,5],則y=f(x)的定義域為[7,11].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若關(guān)于x的不等式x2-2ax-a2≤0的解集為A,且[0,1]⊆A,則a的取值范圍是{a|$a≥\sqrt{2}-1或a≤-\sqrt{2}-1$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a,b∈R,已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},0≤x<2}\\{lo{g}_{16}x,x≥2}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+af(x)+b=0有且只有7個不同實(shí)數(shù)根,則$\frac{a}$的取值范圍是(-$\frac{3}{5}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,求:
(1)求它的定義域;
(2)f(a)+f($\frac{1}{a}$)的值.
(3)f($\frac{1}{2}$)+f($\frac{1}{3}$)+f(-2)+f(-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題P:?x∈R,$x+\frac{1}{x}<a$成立,則P的否定為( 。
A.?x∈R,$x+\frac{1}{x}>a$成立B.?x∈R,$x+\frac{1}{x}<a$成立C.?x∈R,$x+\frac{1}{x}≥a$成立D.?x∈R,$x+\frac{1}{x}≤a$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=mx2+nx-2(n>0,m>0)的圖象與x軸交與(2,0),則$\frac{1}{m}+\frac{2}{n}$的最小值為8.

查看答案和解析>>

同步練習(xí)冊答案