13.若a,b∈R,且ab>0,則“a=b”是“$\frac{a}+\frac{a}≥2$等號成立”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既非充分又非必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合基本的性質(zhì)進(jìn)行判斷即可.

解答 解:∵ab>0,∴$\frac{a}$>0,
當(dāng)a=b,則$\frac{a}$+$\frac{a}$=1+1=2,此時等號成立,
$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2,當(dāng)且僅當(dāng)$\frac{a}$=$\frac{a}$,即a=b時取等號,
故“a=b”是“$\frac{a}+\frac{a}≥2$等號成立”的充要條件,
故選:A

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)基本不等式的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知全集U=R,集合A={x|-1≤x<2},則集合∁UA={x|x<-1或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-x,x>0}\\{\frac{1}{2}-|{\frac{1}{2}+x}|,x≤0}\end{array}}\right.$,若方程f(x)=kx-k有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍為$(1,+∞)∪\left\{{-\frac{1}{3}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列${a_n}=n•sin\frac{nπ}{2}$,則a1+a2+a3+…+a100=( 。
A.-48B.-50C.-52D.-49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在2017年的上海高考改革方案中,要求每位考生必須在物理、化學(xué)、生物、政治、歷史、地理6門學(xué)科中選擇3門學(xué)科參加等級考試.小明同學(xué)決定在生物、政治、歷史三門中至多選擇一門,那么小明同學(xué)的選科方案有10種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓Γ的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn)$(1,\frac{3}{2})$,它的一個焦點(diǎn)與拋物線 E:y2=4x的焦點(diǎn)重合.
(1)求橢圓Γ的方程;
(2)斜率為k的直線l過點(diǎn)F(1,0),且與拋物線 E交于A、B兩點(diǎn),設(shè)點(diǎn)P(-1,k),△PAB的面積為$4\sqrt{3}$,求k的值;
(3)若直線l過點(diǎn)M(0,m)(m≠0),且與橢圓Γ交于C、D兩點(diǎn),點(diǎn)C關(guān)于y軸的對稱點(diǎn)為Q,直線QD的縱截距為n,證明:mn為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=ex+3,則f(x)在x=0處切線的方程是( 。
A.x-y+4=0B.x+y-4=0C.4x-y+4=0D.4x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn).
(Ⅰ)證明:BD1∥平面AEC;
(Ⅱ)證明:平面AEC⊥平面BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,已知sinBsin($\frac{π}{4}$+A)-sinAsin($\frac{π}{4}$+B)=sin$\frac{π}{4}$.
(1)求證:B-A=$\frac{π}{2}$;
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案