分析 (Ⅰ)連接BD交AC于F,連EF.可證EF∥D1B,又EF?平面EAC,從而可求得BD1∥平面EAC.
(Ⅱ)先證明AC⊥BD,有DD1⊥平面ABCD,又AC?平面ABCD,可證明DD1⊥AC,從而可證AC⊥平面D1DB,即證明平面D1DB⊥平面AEC.
解答 證明:(Ⅰ)BD交AC于F,連EF,
因?yàn)镕為正方形ABCD對(duì)角線的交點(diǎn),
所長(zhǎng)F為AC、BD的中點(diǎn),
在DD1B中,E、F分別為DD1、DB的中點(diǎn),
所以EF∥D1B,
又EF?平面EAC,所以BD1∥平面EAC;
(Ⅱ)在正方體ABCD-A1B1C1D1中,
∵四邊形ABCD是正方形,∴AC⊥BD
又在正方體ABCD-A1B1C1D1中,
∵DD1⊥平面ABCD,
又AC?平面ABCD,∴DD1⊥AC
DD1?平面D1DB,BD?平面D1DB,BD∩DD1=D
∴AC⊥平面D1DB
∵AC?平面AEC,
∴平面D1DB⊥平面AEC.
點(diǎn)評(píng) 本題主要考查平面與平面垂直的判定,直線與平面平行的判定,考查了轉(zhuǎn)化思想,綜合性較強(qiáng),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $3-2\sqrt{2}$ | B. | $-3+2\sqrt{2}$ | C. | $-3±2\sqrt{2}$ | D. | $3±2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=tan2x | B. | y=sinx | C. | y=cos2x | D. | y=sin2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com