3.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x$.
(Ⅰ)求$f(\frac{π}{6})$的值;
(Ⅱ)當(dāng)$x∈[-\frac{π}{2},0]$時(shí),求f(x)的最小值以及取得最小值時(shí)x的值.

分析 (Ⅰ)利用特殊角的三角函數(shù)值計(jì)算即可得解.
(Ⅱ)利用三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,由-$\frac{π}{2}$≤x≤0,可得-$\frac{5π}{6}$≤2x+$\frac{π}{6}$≤$\frac{π}{6}$,利用正弦函數(shù)的圖象和性質(zhì)即可得解.

解答 (本題滿分為9分)
解:(I)$f(\frac{π}{6})$=$\sqrt{3}$sin$\frac{π}{6}$cos$\frac{π}{6}$+cos2$\frac{π}{6}$
=$\sqrt{3}×\frac{1}{2}×\frac{\sqrt{3}}{2}$+$\frac{3}{4}$,…(3分)
=$\frac{3}{2}$.…(4分)
(II)$f(x)=\sqrt{3}sinxcosx+{cos^2}x$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,…(2分)
=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$.…(4分)
因?yàn)?$\frac{π}{2}$≤x≤0,
所以-$\frac{5π}{6}$≤2x+$\frac{π}{6}$≤$\frac{π}{6}$,…(6分)
當(dāng)2x+$\frac{π}{6}$=-$\frac{π}{2}$,即x=-$\frac{π}{3}$時(shí),函數(shù)取得最小值f(-$\frac{π}{3}$)=-$\frac{1}{2}$.
所以f(x)的最小值為-$\frac{1}{2}$此時(shí)x=-$\frac{π}{3}$.…(9分)

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象與性質(zhì).考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的綜合運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=(m-2)x2+(m-1)x+m3+3m+2為偶函數(shù),則m=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)的定義域?yàn)?,1],且f(x)的圖象連續(xù)不間斷.若函數(shù)f(x)滿足:對(duì)于給定的m (m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),則稱f(x)具有性質(zhì)P(m).
(1)已知函數(shù)f(x)=$\left\{\begin{array}{l}{-4x+1,0≤x≤\frac{1}{4}}\\{4x-1,\frac{1}{4}<x<\frac{3}{4}}\\{-4x+5,\frac{3}{4}≤x≤1}\end{array}\right.$,若f(x)具有性質(zhì)P(m),求m最大值;
(2)若函數(shù)f(x)滿足f(0)=f(1),求證:對(duì)任意k∈N*且k≥2,函數(shù)f(x)具有性質(zhì)P($\frac{1}{k}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.紅、黃兩支隊(duì)員實(shí)力相當(dāng)?shù)钠古仪蜿?duì)進(jìn)行擂臺(tái)賽,已知每支隊(duì)均有六名隊(duì)員,規(guī)則如下:每支隊(duì)給隊(duì)員編號(hào)1,2,3,4,5,6,第一場(chǎng)雙方1號(hào)比賽,負(fù)者被淘汰.然后負(fù)方隊(duì)的2號(hào)與勝方隊(duì)的1號(hào)再比賽,負(fù)者又被淘汰,一直這樣進(jìn)行下去,直到一方隊(duì)員全被淘汰時(shí),另一方獲勝,則紅隊(duì)有3名隊(duì)員波淘汰且最后戰(zhàn)勝黃隊(duì)的概率是( 。
A.$\frac{1}{11}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC,若對(duì)?t∈R,|$\overrightarrow{BA}-t\overrightarrow{BC}|≥|\overrightarrow{BA}-2\overrightarrow{BC}$|,則△ABC的形狀為( 。
A.必為銳角三角形B.必為直角三角形C.必為鈍角三角形D.答案不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若$\sqrt{3}$sinx-cosx=4-m,則實(shí)數(shù)m的取值范圍是( 。
A.2≤m≤6B.-6≤m≤6C.2<m<6D.2≤m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某純凈水制造廠在凈化水的過程中,每增加一次過濾可減少水中雜質(zhì)的20%.
(Ⅰ)寫出水中雜質(zhì)含量y與過濾次數(shù)x之間的函數(shù)關(guān)系式;
(Ⅱ)要使水中雜質(zhì)減少到原來的5%以下,則至少需要過濾幾次?(參考數(shù)據(jù)lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知M是不小于2的整數(shù),將分別寫有0,1,2,…,M-1的卡各一張放入一個(gè)箱子中,若從這個(gè)箱子中隨機(jī)取出一張卡,記下卡上所寫的數(shù)字后將卡放回箱子中,這樣的實(shí)驗(yàn)進(jìn)行n次,所得的n個(gè)數(shù)字的和為偶數(shù)的概率為Pn
(1)當(dāng)M=2時(shí),求Pn
(2)當(dāng)M=3時(shí),求P1,P2,Pn
(3)當(dāng)M為偶數(shù)、奇數(shù)時(shí),分別求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)p:實(shí)數(shù)x滿足a<x<3a,其中a>0;q:實(shí)數(shù)x滿足2<x<3.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案