分析 由題意可得t=2x+1>2,換元由不等式的性質(zhì)可得.
解答 解:∵x>0,∴t=2x+1>2,
∴y=$\frac{{2}^{x}}{{2}^{x}+1}$=$\frac{t-1}{t}$=1-$\frac{1}{t}$,
由t>2可得0<$\frac{1}{t}$<$\frac{1}{2}$,
∴-$\frac{1}{2}$<-$\frac{1}{t}$<0,∴$\frac{1}{2}$<1-$\frac{1}{t}$<1
故答案為:($\frac{1}{2}$,1)
點(diǎn)評 本題考查函數(shù)的值域,換元并利用不等式的性質(zhì)是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y-$\sqrt{2}$=0 | B. | x+y+1=0 | C. | x+y-1=0 | D. | x+y+$\sqrt{2}$=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1-{a}^{n}}{1-a}$ | B. | $\frac{1-{a}^{n+1}}{1-a}$ | C. | $\frac{1-{a}^{n+1}}{1-a}$或n+1 | D. | 以上都不是 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{5}$ | B. | $\frac{\sqrt{7}}{4}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{\sqrt{10}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | ±$\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com