已知f(x-
1
x
)=x2+(
1
x2
),則f(x+
1
x
)=
 
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令x-
1
x
=t,則f(t)=t2+2,再令t=x+
1
x
,則f(x+
1
x
)=(x+
1
x
2+2,答案即所求.
解答: 解:∵f(x-
1
x
)=x2+(
1
x2
)=(x-
1
x
)2
+2,
令x-
1
x
=t
∴f(t)=t2+2,
再令t=x+
1
x
,
∴f(x+
1
x
)=(x+
1
x
2+2=x2+
1
x2
+4.
故答案為:x2+
1
x2
+4.
點評:本題考查函數(shù)解析式的求解和常用方法,解題時要認真審題,仔細解答,注意熟練掌握常規(guī)解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an+1=an2-nan+1(n∈N*
(1)當(dāng)a1=2時,求a2、a3、a4,并由此猜想出an的一個通項公式;
(2)當(dāng)a1≥2時,證明:對?n∈N*,有an≥n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓:(x+cosθ)2+(y-sinθ)2=1,直線l:y=kx.給出下面四個命題:
①對任意實數(shù)k和θ,直線l和圓M有公共點;
②對任意實數(shù)k,必存在實數(shù)θ,使得直線l和圓M相切;
③對任意實數(shù)θ,必存在實數(shù)k,使得直線l和圓M相切;
④存在實數(shù)k和θ,使得圓M上有一點到直線l的距離為3.
其中正確的命題是
 
(寫出所以正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-mx+5在[-2,+∞)上是增函數(shù),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,給定y軸正半軸上兩點A(0,a),B(0,b)(a>b>0).試在x軸正半軸上求一點C,試在x軸正半軸上求一點C,使∠ACB取得最大值,則C的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的方向向量為
s
=(-1,1,1),平面π的法向量為
n
=(2,x2+x,-x),若直線l∥平面π,則x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱中,ABC-A′B′C′,AB=AC=AA′=2,BC=
3
AB且此三棱柱的各個頂點都在一個球面上,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件:
y≥x
x+2y≤2
x≥-2
,則z=x-3y+1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤a},B={x|1<x<2},A∩(∁RB)={x|x≤1},則實數(shù)a的取值范圍是( 。
A、1≤a≤2
B、1<a<2
C、1≤a<2
D、1<a≤2

查看答案和解析>>

同步練習(xí)冊答案