12.如果滿足∠ABC=60°,AC=12,BC=k的三角形恰有一個(gè),那么k的取值范圍是( 。
A.0<k≤12B.0<k<12C.0<k≤12或k=8$\sqrt{3}$D.0<k<12或k=8$\sqrt{3}$

分析 由題意可得ksin60°=12或12≥k時(shí),滿足三角形恰有一個(gè),解不等式可得.

解答 解:由題意可得當(dāng)ksin60°=12或12≥k時(shí),滿足三角形恰有一個(gè),
解得k=$\frac{12}{sin60°}$=$\frac{12}{\frac{\sqrt{3}}{2}}$=8$\sqrt{3}$,0<k≤12,
故選:C.

點(diǎn)評(píng) 本題考查三角形解得個(gè)數(shù)的判斷,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某單位招聘職工,招聘過程包括筆試和面試兩輪,規(guī)定通過筆試后方可參加面試,面試合格即被錄取,且兩輪測(cè)試是相互獨(dú)立的.已知甲、乙、丙三人到該單位來(lái)應(yīng)聘,且甲、乙、丙三個(gè)同學(xué)能通過筆試的概率分別是0.5,0.6,0.4,能通過面試的概率分別是0.6,0.5,0.75.
(1)求恰有兩人通過筆試的概率;
(2)將甲、乙、丙三人被錄用的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B?A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在(1-x)6(1十x+x24的展開式中,含x7的項(xiàng)的系數(shù)為-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=cosx(asinx-cosx)+cos2(x-$\frac{π}{2}$),x∈R,a>0的最大值為2,則f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值與最小值的差為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)是定義在(-1,1)上的奇函數(shù),且當(dāng)x∈(0,1)時(shí),f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,1)上的解析式;
(2)證明f(x)在(0,1)上是減函數(shù);
(3)當(dāng)m取何值時(shí),f(x)=m在(-1,0)上有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知正項(xiàng)等比數(shù)列{an}滿足a9=a8+2a7,若存在兩項(xiàng)am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}+\frac{4}{n}$的最小值為(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)g(x)=$\frac{1}{x•sinθ}$+2lnx在[$\frac{1}{2}$,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx-$\frac{m-1}{x}$,m∈R.
(1)求θ的值;
(2)當(dāng)m≥1,x≥1時(shí),求證:f(x)≥g(x);
(3)設(shè)h(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一個(gè)x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的一條漸近線向上平移兩個(gè)單位長(zhǎng)度后與拋物線y2=4x相切,則雙曲線的離心率e=(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案