12.已知函數(shù)y=f(2x+1)定義域為[1,4],則y=f(3x)的定義域為(  )
A.[1,2]B.[3,81]C.[3,9]D.[-∞,4]

分析 根據(jù)題目給出的函數(shù)y=f(2x+1)定義域,求出函數(shù)y=f(x)的定義域,然后由3x在f(x)的定義域內(nèi)求解x即可得到函數(shù)y=f(3x)定義域.

解答 解:因為函數(shù)y=f(2x+1)定義域為[1,4],
所以x∈[1,4],則2x+1∈[3,9],即函數(shù)f(x)的定義域為[3,9],
再由3≤3x≤9,得:1≤x≤2,
所以函數(shù)y=f(3x)的定義域為[1,2].
故選:A.

點評 本題考查了函數(shù)的定義域及其求法,給出了函數(shù)y=f(x)的定義域為[a,b],求解y=f[g(x)]的定義域,只要讓g(x)∈[a,b],求解x即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知{an}是遞增的等比數(shù)列,且a2+a3=-1,那么首項a1的取值范圍是$({-∞\;,\;-\frac{1}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)隨機變量X服從[1,4]上的均勻分布,則P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.化簡(a+2b+c)3-(a+b)3-(b+c)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,設(shè)f(n)=an(n∈N+),求證:$\frac{1}{2}$≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若Sn為等差數(shù)列{an}的前n項和,且S4=4a3+2,則公差d的值為( 。
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P為球O球面上的一點,A為OP的中點,若過點A且與OP垂直的平面截球O所得圓的面積為3π,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過原點且與直線$\sqrt{6}x-\sqrt{3}y+1=0$平行的直線l被圓${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦長為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15),[35,45)的被調(diào)查人中各隨機選取兩人進行調(diào)查,記選中的4人不支持“生育二胎”人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望;
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
支持a=c=
不支持b=d=
合計
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+\\;b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案