4.小李打算從10位朋友中邀請4位去旅游,這10位朋友中有一對是雙胞胎,對于這對雙胞胎,要么都邀請,要么都不邀請,則不同的邀請方法有98種.

分析 分兩類,第一類,這對雙胞胎都邀請,第二類,這對雙胞胎都不邀請,根據(jù)分類計數(shù)原理可得.

解答 解:第一類,這對雙胞胎都邀請,有C82=28種,
第二類,這對雙胞胎都不邀請,有C84=70種,
根據(jù)分類計數(shù)原理知共有28+70=98,
故答案為:98.

點評 本題考查分類計數(shù)原理,這是經(jīng)常出現(xiàn)的一個問題,解題時一定要分清做這件事需要分為幾類,每一類包含幾種方法,把幾個步驟中數(shù)字相加得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)列{an}中,an=(2n-1)3n,a1=3,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項和為Sn,且對任意n∈N+,都有Sn=2an-2.
(I)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}+{3}^{n}}$,數(shù)列{bn}的前n項和為Tn.證明:$\frac{1}{5}$≤Tn≤$\frac{\sqrt{6}+1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:
分組頻數(shù)
[1.30,1.34)4
[1.34,1.38)22
[1.38,1.42)40
[1.42,1.46)22
[1.46,1.50)10
[1.50,1.54)2
合計100
(1)畫出頻率分布直方圖;
(2)估計纖度落在[1.38,1.50)中的頻率及纖度小于1.40的頻率是多少?
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且滿足:Sn=n2+1.
(1)求數(shù)列{an}的通項公式;
(2)若Tn是數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n項和,試證明:Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]•$\sqrt{2si{n}^{2}80°}$的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,點(x,y)在陰影部分所表示的平面區(qū)域上,則z=y-x的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知命題p:點M(1,3)不在圓(x+m)2+(y-m)2=16的內(nèi)部,
命題q:“曲線${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦點在x軸上的橢圓”,
命題s:“曲線${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若?s是?q的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1℃,空氣的溫度是θ0℃,tmin后物體的溫度θ℃可由公式θ=θ0+(θ10)e-kt求得,這里k是一個隨著物體與空氣的接觸狀況而定的正的常數(shù).現(xiàn)有62℃的物體,放在15℃的空氣中冷卻,1min以后物體的溫度是52℃.求上式中k的值(精確到0.01),然后計算開始冷卻后多長時間物體的溫度是42℃,32℃.物體會不會冷卻到12℃?

查看答案和解析>>

同步練習(xí)冊答案