20.將函數(shù)f(x)=5sin(3x-$\frac{π}{6}$)的周期擴(kuò)大為原來的2倍,再將新函數(shù)的圖象向右平移$\frac{π}{3}$,則所得函數(shù)的解析式為y=5sin($\frac{3}{2}$x-$\frac{2π}{3}$).

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)f(x)=5sin(3x-$\frac{π}{6}$)的周期擴(kuò)大為原來的2倍,
可得y=5sin($\frac{3}{2}$x-$\frac{π}{6}$)的圖象;
再將新函數(shù)的圖象向右平移$\frac{π}{3}$,則所得函數(shù)的解析式為y=5sin[$\frac{3}{2}$(x-$\frac{π}{3}$)-$\frac{π}{6}$]=5sin($\frac{3}{2}$x-$\frac{2π}{3}$),
故答案為:y=5sin($\frac{3}{2}$x-$\frac{2π}{3}$).

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)Z=$\frac{1-i}{1+i}+{i^{2016}}$(i為虛數(shù)單位),則z的虛部是( 。
A.1B.-1C.0D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若函數(shù)f(x)=asinx+bcosx(a,b∈R),非零向量$\overrightarrow{m}$=(a,b),我們稱$\overrightarrow{m}$為函數(shù)f(x)的“伙伴向量”,f(x)為向量$\overrightarrow{m}$的“伙伴函數(shù)”.
(1)已知函數(shù)f(x)=($\sqrt{3}$sinωx+cosωx)cosωx-$\frac{1}{2}$,其中ω>0,且函數(shù)f(x)的最小正周期為2π,求f(x)的“伙伴向量”$\overrightarrow{m}$的模;
(2)對于函數(shù)φ(x)=sinxcos2x,是否存在“伙伴向量”?若存在,求出φ(x)的“伙伴向量”,若不存在,請說明理由;
(3)記向量$\overrightarrow{n}$=(1,$\sqrt{3}$)的“伙伴函數(shù)”為h(x),如果關(guān)于x的方程h(x)-k=0在[0,$\frac{π}{2}$]內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求值:
$\frac{1-tan7°-tan8°-tan7°tan8°}{1+tan7°+tan8°-tan7°tan8°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(sin(ωx+φ),cos(ωx+φ))(ω>0,0<|φ|<$\frac{π}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,已知點(diǎn)P(x1,y1),Q(x3,y2)是函數(shù)f(x)圖象上的任意兩點(diǎn),若|y1-y2|=4時(shí),|x1-x2|最小值為$\frac{π}{2}$,且函數(shù)f(x)為奇函數(shù).
(I)求f($\frac{π}{6}$)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知1<m<2,若a=(log2m)0.9,b=(log2m)0.8,則a,b的大小關(guān)系為a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平行四邊形ABCD中,O為對角線交點(diǎn),試用$\overrightarrow{BA}$、$\overrightarrow{BC}$表示$\overrightarrow{CO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角坐標(biāo)系xOy中,函數(shù)y=f(x)的圖象記為I′,若在I′上任取一點(diǎn)M,都能在I′上找到一點(diǎn)N,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,則稱圖象I′為“優(yōu)美圖象”.下列函數(shù)的圖象為“優(yōu)美圖象”的是( 。
A.y=2x+1B.y=log3(x-2)C.y=$\frac{2}{x}$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:(2a-1)x-(a+3)y-(a-11)=0(a∈R)交x軸正半軸于點(diǎn)A,y軸正半軸于點(diǎn)B,當(dāng)三角形AOB(O為坐標(biāo)原點(diǎn))面積最小時(shí)a的值為-1.

查看答案和解析>>

同步練習(xí)冊答案