18.下列說法正確的個數(shù)是( 。
①∅=0;②∅={0};③∅={∅};④0∈∅;⑤0∈{0};⑥∅∈{∅};⑦∅?{∅}.
A.3B.4C.5D.6

分析 利用元素與集合,集合與集合間關(guān)系的判斷方法與表示方法逐個進(jìn)行判斷,注意空集是任何集合的子集,任何非空集合的真子集的規(guī)定.

解答 解:∅表示空集,集合中不含有任何元素,∴①②③④不正確;
{0}是單元素集,只含有一個元素0,∴⑤正確;
集合{∅}是單元素集,只含有一個元素∅,∴⑥正確;
由于空集∅是任何集合的子集,是任何非空集合的真子集,∴⑦正確.
因此,有3個說法正確.
故選:A.

點評 本題主要考查0、空集、以及{∅}的區(qū)別與聯(lián)系,元素與集合的關(guān)系,子集與真子集等,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,函數(shù)f(x)=sin(-2x+$\frac{π}{3}$)的單調(diào)增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,函數(shù)f(x)=cos(-2x+$\frac{π}{3}$)的單調(diào)增區(qū)間[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直角三角形面積為12,三個邊成等差數(shù)列,則斜邊長等于5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列基本不等式的應(yīng)用正確的是(  )
A.若a、b∈R,則$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2
B.y=lgx+$\frac{1}{lgx}$≥2$\sqrt{lgx•\frac{1}{lgx}}$=2
C.y=3x+3-x≥2$\sqrt{{3}^{x}•{3}^{-x}}$=2(x∈R)
D.y=sinx+$\frac{1}{sinx}$≥2$\sqrt{sinx•\frac{1}{sinx}}$=2(0<x<$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,2sinAcosB=sinCcosB+cosCsinB,角B=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.光線通過一塊玻璃板,其強(qiáng)度將會失掉10%,先將6塊玻璃板疊加制成玻璃墻,求光線通過該玻璃板后的強(qiáng)度為通過一塊玻璃板后強(qiáng)度的百分率(精確到0.1)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=log${\;}_{\frac{1}{3}}$sin(2πx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間是( 。
A.(-$\frac{3}{8}$+k,$\frac{1}{8}$+k)(k∈Z)B.(-$\frac{1}{8}$+k,$\frac{1}{8}$+k)(k∈Z)C.($\frac{1}{8}$+k,$\frac{5}{8}$+k)(k∈Z)D.($\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-1|-|2x-a|
(1)當(dāng)a=5時,求不等式f(x)≥0的解集;
(2)設(shè)不等式f(x)≥3的解集為A,若5∈A,6∉A,求整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四邊形ABCD中,若$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(3,-4),$\overrightarrow{CD}$=(-2,-3),則四邊形ABCD的面積是(  )
A.20B.30C.40D.50

查看答案和解析>>

同步練習(xí)冊答案