6.函數(shù)y=log${\;}_{\frac{1}{3}}$sin(2πx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間是(  )
A.(-$\frac{3}{8}$+k,$\frac{1}{8}$+k)(k∈Z)B.(-$\frac{1}{8}$+k,$\frac{1}{8}$+k)(k∈Z)C.($\frac{1}{8}$+k,$\frac{5}{8}$+k)(k∈Z)D.($\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z)

分析 由符合函數(shù)的單調(diào)性可知0+2kπ<2πx+$\frac{π}{4}$<$\frac{π}{2}$+2kπ,解出即可.

解答 解:∵0<$\frac{1}{3}$<1,∴y=log${\;}_{\frac{1}{3}}$sin(2πx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間為y=sin(2πx+$\frac{π}{4}$)的單調(diào)遞增區(qū)間,
∴0+2kπ<2πx+$\frac{π}{4}$<$\frac{π}{2}$+2kπ,解得-$\frac{1}{8}$+k<x<$\frac{1}{8}$+k.
∴函數(shù)的單調(diào)遞減區(qū)間為(-$\frac{1}{8}$+k,$\frac{3}{8}$+k),k∈Z.
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),正弦函數(shù)的性質(zhì),復(fù)合函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)y=f(x),當(dāng)x=2時(shí)有最大值16,它與x軸相交所得的線段長(zhǎng)為8,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)P=log35,Q=log52,R=log2(log32),則它們由小到大的順序?yàn)镽、Q、P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的個(gè)數(shù)是( 。
①∅=0;②∅={0};③∅={∅};④0∈∅;⑤0∈{0};⑥∅∈{∅};⑦∅?{∅}.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2+ex-$\frac{1}{2}$(x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是(-∞,$\sqrt{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r-1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*,anSn≥a6S6;
(3)已知數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”,且a1=-10,是否存在正整數(shù)k,m(m>k),使得a1+a2+…+ak-1+ak=a1+a2+…+am-1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對(duì)任意實(shí)數(shù),若f(x+m)=$\frac{1-f(x)}{1+f(x)}$(m>0)成立,
①證明f(x)是以2m為周期的函數(shù);
②若f(x)在(-m,m]上的解析式是f(x)=x2,寫出f(x)在區(qū)間(m,3m]及R上的解析式(不必寫過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對(duì)于函數(shù)f(x)=x2+x+1作x=h(t)的代換,則不改變函數(shù)f(x)的值域的代換是x=t-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的斜率為1,且與圓C:(x-3)2+(y-4)2=4相交,截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求直線l的方程;
(2)設(shè)Q點(diǎn)的坐標(biāo)為(2,3),且動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比值為實(shí)數(shù)k(k>0),若動(dòng)點(diǎn)M的軌跡方程是圓,試確定k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案