分析 (1)利用二倍角公式與和差公式對(duì)已知條件左側(cè)分解因式,得出C.
(2)利用正余弦定理得出a,b的關(guān)系,連理方程組解出a,b.
解答 解:(1)∵$\sqrt{3}$sin$\frac{C}{2}co{s}^{2}\frac{B}{2}-cos$$\frac{C}{2}$cos2$\frac{B}{2}-\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
∴cos2$\frac{B}{2}$($\sqrt{3}$sin$\frac{C}{2}$-cos$\frac{C}{2}$)-$\frac{\sqrt{3}}{2}$sin$\frac{C}{2}$+$\frac{1}{2}$cos$\frac{C}{2}$=0.
∴cos2$\frac{B}{2}$•2sin($\frac{C}{2}-\frac{π}{6}$)-sin($\frac{C}{2}$-$\frac{π}{6}$)-0,
∴sin($\frac{C}{2}$-$\frac{π}{6}$)(2cos2$\frac{B}{2}$-1)=0,
∴sin($\frac{C}{2}-\frac{π}{6}$)cosB=0,
∴sin($\frac{C}{2}-\frac{π}{6}$)=0或cosB=0.
∴$\frac{C}{2}-\frac{π}{6}$=kπ或B=$\frac{π}{2}$(舍去).
∴C=2kπ+$\frac{π}{3}$,k∈Z.
∴C=$\frac{π}{3}$.
(2)若sinB=3sinA,則由正弦定理$\frac{a}{sinA}=\frac{sinB}$,得b=3a,①
又∵c=3,則由余弦定理,得9=a2+b2-2abcos$\frac{π}{3}$,②
聯(lián)立方程①②,解得a=$\frac{3\sqrt{7}}{7}$,b=$\frac{9\sqrt{7}}{7}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,正余弦定理在解三角形中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2sinx | B. | 2cosx | C. | -2sinx | D. | -2cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2sin($\frac{x}{4}$-$\frac{π}{4}$) | B. | 2sin($\frac{x}{4}$+$\frac{π}{4}$) | C. | 2sin($\frac{πx}{4}$-$\frac{π}{4}$) | D. | 2sin($\frac{πx}{4}$+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z) | B. | (-$\frac{1}{8}$+k,$\frac{1}{8}$+k](k∈Z) | C. | [$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z) | D. | [$\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com