分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移先求出k的值即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-x+z的截距最大,此時(shí)z最大為6,即x+y=6.
由$\left\{\begin{array}{l}{x+y=6}\\{x-y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3),
同時(shí)A也在直線y=k上,∴k=3,
當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)B時(shí),直線y=-x+z的截距最小,此時(shí)z最小,
由$\left\{\begin{array}{l}{y=3}\\{x+2y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-6}\\{y=3}\end{array}\right.$,即B(-6,3),
代入目標(biāo)函數(shù)z=x+y得z=-6+3=-3.
即目標(biāo)函數(shù)z=x+y的最小值為-3.
故答案為:-3
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 否命題是“正弦函數(shù)是分段函數(shù) | |
B. | 逆否命題是“分段函數(shù)不是正弦函數(shù)” | |
C. | 逆否命題是“分段函數(shù)是正弦函數(shù)” | |
D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -11 | B. | -8 | C. | 5 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com