13.函數(shù)f(x)=1-2sin22x是( 。
A.偶函數(shù)且最小正周期為$\frac{π}{2}$B.奇函數(shù)且最小正周期為$\frac{π}{2}$
C.偶函數(shù)且最小正周期為πD.奇函數(shù)且最小正周期為π

分析 先將函數(shù)運用二倍角公式化簡為y=Asin(ωx+φ)的形式,再利用正弦函數(shù)的性質(zhì)可得答案.

解答 解:由題意可得:f(x)=cos4x,
所以該函數(shù)圖象關(guān)于y軸對稱,屬于偶函數(shù),且周期為T=$\frac{2π}{4}$=$\frac{π}{2}$.
故選:A.

點評 本題主要考查三角函數(shù)的奇偶性和最小正周期的求法.一般都要把三角函數(shù)化簡為y=Asin(ωx+φ)的形式再解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列所給關(guān)系正確的個數(shù)是2.
①π∈R;②$\sqrt{3}$∉Q;③0∈N*;④|-4|∉N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=$\sqrt{6}$,M是CC1的中點,則異面直線AB1與A1M所成角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)Sn是數(shù)列{an}的前n項和,an=4Sn-3,則S2=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若點P(-3,4)在角α的終邊上,則cosα=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px過點A(1,2),則p=2,準(zhǔn)線方程是x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|$\frac{x-2}{x}$>0},B={y|y=5-4t-$\frac{1}{t}$,t>0},則B∩∁RA=( 。
A.(0,1]B.[1,2)C.[0,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)奇函數(shù)f(x)的定義域為R,且周期為5,若f(1)<-1,f(4)=loga2(a>0,且a≠1),則實數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列5個命題,①由于零向量$\overrightarrow 0$方向不確定,故$\overrightarrow 0$不能與任意向量平行
②$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A.B.C.D四點共線
③平行四邊形ABCD中,一定有$\overrightarrow{AB}=\overrightarrow{DC}$
④若$\overrightarrow m=\overrightarrow n,\;\;\overrightarrow n=\overrightarrow k$,則$\overrightarrow m=\overrightarrow k$⑤若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$
其中不正確的命題有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

同步練習(xí)冊答案