6.已知集合A={x|x2-2px+p2+2p+2=0,x∈R},且A∩R+=∅,求實(shí)數(shù)p的取值范圍.

分析 化簡(jiǎn)可得(x-p)2=-2p-2,從而討論確定方程的解的個(gè)數(shù),從而解集合A,再解得.

解答 解:∵x2-2px+p2+2p+2=0,
∴(x-p)2=-2p-2,
①當(dāng)-2p-2<0,即p>-1時(shí),
A=∅,故A∩R+=∅;
②當(dāng)-2p-2=0,即p=-1時(shí),
A={-1},故A∩R+=∅;
③當(dāng)p<-1時(shí),
p+$\sqrt{-2p-2}$≤0,
解之可得恒成立;
綜上所述,實(shí)數(shù)p的取值范圍為R.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與分類(lèi)討論的思想應(yīng)用,同時(shí)考查了集合的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+sin2x;
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若0<β<$\frac{π}{2}$<α<π,且f($\frac{α+β}{2}$)=0,f($\frac{π}{4}$+β)=1,求f($\frac{α-β}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,G是△ABC的重心,過(guò)G的直線與邊AB,AC分別相交于點(diǎn)E,F(xiàn),若AE=mAB,AF=nAC(mn≠0),求$\frac{1}{m}$+$\frac{1}{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知正項(xiàng)等差數(shù)列{an}的公差d為函數(shù)f(x)=x3-6x2+9x的兩極值點(diǎn)之差,且d,a2+1,13-a3成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知100件產(chǎn)品中有10件次品,從中任取3件,則任意取出的3件產(chǎn)品中次品數(shù)的均值為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)為R上的偶函數(shù).且對(duì)任意x∈R都有f(x+6)=f(x)+f(3),則f(2007)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若實(shí)數(shù)a,b在區(qū)間[0,$\sqrt{2}$]上取值,則函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有兩個(gè)相異極值點(diǎn)的概率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.用數(shù)學(xué)歸納法證明不等式$\frac{n+2}{2}$<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$<n+1(n>1,n∈N*)的過(guò)程中,當(dāng)n=2時(shí),中間式子為(  )
A.1B.1+$\frac{1}{2}$C.1+$\frac{1}{2}$+$\frac{1}{3}$D.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}是等比數(shù)列,首項(xiàng) a1=1,公比q≠0,其前n項(xiàng)和為Sn,且 S1+a1,S3+a3,S2+a2成等差數(shù)列
(1)求{an}通項(xiàng)公式
(2)若數(shù)列{ bn}滿足$a_{n+1}={(\frac{1}{2})}^{a_nb_n}$,求數(shù)列{bn}的前n項(xiàng)和 Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案