19.在等差數(shù)列{an}中,若a1+a4+a7=45,a2+a5+a8=39,則a4+a7+a10=87.

分析 由已知結(jié)合等差數(shù)列的性質(zhì)求得a4、a5的值,進(jìn)一步求得公差d,再由等差數(shù)列的性質(zhì)可得a4+a7+a10=3a7,由通項公式求出a7后得答案.

解答 解:在等差數(shù)列{an}中,由a1+a4+a7=45,得3a4=15,∴a4=5;
由a2+a5+a8=39,得3a5=39,∴a5=13.
∴d=a5-a4=13-5=8,
則a4+a7+a10=3a7=3(a5+2d)=3(13+2×8)=87.
故答案為:87.

點(diǎn)評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.己知集合A={x|8+2x-x2≥0},B={x||x|<m},A∩B=B,則m的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.判斷下列函數(shù)的奇偶性.
(1)y=$\frac{{x}^{2}-x}{x-1}$;
(2)f(x)=(1+x)$\sqrt{\frac{1-x}{1+x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x>9,函數(shù)y=$\sqrt{x}$+$\frac{1}{\sqrt{x}-3}$的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=log0.5(1+2x+4x•a),當(dāng)x∈(-∞,1]時,f(x)有意義,則實(shí)數(shù)α的值的集合為{a|a≥-2},當(dāng)f(x)的定義域為(-∞,1]時,則實(shí)數(shù)α的值的集合為{a|a≥-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.由拋物線y=x2-1,直線x=2,x=0,y=0,所圍成圖形的面積是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,是函數(shù)y=f(x)=sin(ω1x+φ1)和y=g(x)=sin(ω2x+φ2)在一個周期上的圖象,為了得到y(tǒng)=f(x)的圖象,只要將y=g(x)的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{3}$個單位長度.再把所得點(diǎn)的橫坐標(biāo)伸長到原來的2倍.縱坐標(biāo)不變
B.向左平移$\frac{π}{3}$個單位長度.再把所得點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍.縱坐標(biāo)不變
C.向左平移$\frac{π}{2}$個單位長度.再把所得點(diǎn)的橫坐標(biāo)伸長到原來的2倍.縱坐標(biāo)不變
D.向左平移$\frac{π}{2}$個單位長度.再把所得點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍.縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在半徑為R的球內(nèi)放入5個球,其中有4個球大小相等,兩兩相外切且均與大球相內(nèi)切,另一個小球與這四個球均相外切,則這個小球半徑為(  )
A.(3-2$\sqrt{2}$)RB.(4-2$\sqrt{3}$)RC.(5-2$\sqrt{6}$)RD.(6-2$\sqrt{7}$)R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.隨著人們社會責(zé)任感與公眾意識的不斷提高,越來越多的人成為了志愿者.某創(chuàng)業(yè)園區(qū)對其員工是否為志愿者的情況進(jìn)行了抽樣調(diào)查,在隨機(jī)抽取的10位員工中,有3人是志愿者.
(Ⅰ)在這10人中隨機(jī)抽取4人填寫調(diào)查問卷,求這4人中恰好有1人是志愿者的概率P1;
(Ⅱ)已知該創(chuàng)業(yè)園區(qū)有1萬多名員工,從中隨機(jī)調(diào)查1人是志愿者的概率為$\frac{3}{10}$,那么在該創(chuàng)業(yè)園區(qū)隨機(jī)調(diào)查4人,求其中恰有1人是志愿者的概率P2
(Ⅲ)該創(chuàng)業(yè)園區(qū)的A團(tuán)隊有100位員工,其中有30人是志愿者.若在A團(tuán)隊隨機(jī)調(diào)查4人,則其中恰好有1人是志愿者的概率為P3.試根據(jù)(Ⅰ)、(Ⅱ)中的P1和P2的值,寫出P1,P2,P3的大小關(guān)系(只寫結(jié)果,不用說明理由).

查看答案和解析>>

同步練習(xí)冊答案