A. | (3-2$\sqrt{2}$)R | B. | (4-2$\sqrt{3}$)R | C. | (5-2$\sqrt{6}$)R | D. | (6-2$\sqrt{7}$)R |
分析 我們易將這四個(gè)球的球心連接成一個(gè)正四面體,并根據(jù)四球外切,得到四面體的棱長(zhǎng)為2r,正四面體的外接球半徑為$\frac{\sqrt{6}}{2}$r,由于這四個(gè)球之間有一個(gè)小球和這四個(gè)球都外切,則小球的球心與四面體的球體重合,進(jìn)而再由小球與其它四球外切,球心距(即正四面體外接球半徑)等于大球半徑與小球半徑之和,得到答案.
解答 解:由已知中四個(gè)半徑都是r的球中的三個(gè)放在桌面上,使它兩兩外切,
然后在它們上面放上第四個(gè)球,使它與前三個(gè)都相切,
連接四個(gè)球的球心,得到一個(gè)棱長(zhǎng)為2r的正四面體
則該正四面體的外接球半徑為$\frac{\sqrt{6}}{2}$r
若這四個(gè)球之間有一個(gè)小球和這四個(gè)球都外切,則這個(gè)小球的半徑為r1=($\frac{\sqrt{6}}{2}$-1)r,
另有一個(gè)更大的球與這四個(gè)球都內(nèi)切,更大球的R=($\frac{\sqrt{6}}{2}$+1)r.
∴r1=($\frac{\sqrt{6}}{2}$-1)$\frac{1}{\frac{\sqrt{6}}{2}+1}$R=(5-2$\sqrt{6}$)R,
故選:C.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的結(jié)構(gòu)特征,球的結(jié)構(gòu)特征,其中根據(jù)已知條件求出四個(gè)半徑為1的球球心連接后所形成的正四面體的棱長(zhǎng)及外接球半徑的長(zhǎng)是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b-a+1 | B. | b(a-1) | C. | b-a-1 | D. | b(1-a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -3 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com