10.若$\left\{\begin{array}{l}x+4y-8≤0\\ x≥0\\ y>0\end{array}\right.$在區(qū)域內(nèi)任取一點(diǎn)P,則點(diǎn)P落在圓x2+y2=2內(nèi)的概率為$\frac{π}{16}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,求出對應(yīng)區(qū)域的面積,根據(jù)幾何概型的概率公式進(jìn)行求解即可.

解答 解:不等式組對應(yīng)的平面區(qū)域?yàn)槿切蜲AB,其中A(8,0),B(0,2),對應(yīng)的面積為S=$\frac{1}{2}×2×8=8$,
x2+y2=2表示的區(qū)域?yàn)榘霃綖?\sqrt{2}$的圓在三角形OAB內(nèi)部的部分,對應(yīng)的面積為$\frac{1}{4}$π•($\sqrt{2}$)2=$\frac{π}{2}$,
∴根據(jù)幾何概型的概率公式,得到所求對應(yīng)概率P=$\frac{\frac{π}{2}}{8}$=$\frac{π}{16}$.
故答案為:$\frac{π}{16}$.

點(diǎn)評 本題主要考查幾何概型的概率公式,利用二元一次不等式組表示平面區(qū)域求出對應(yīng)的面積是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)l,m,n表示三條不同的直線,α,β,γ表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若l⊥α,m⊥l,m⊥β,則α⊥β;
②若m?β,n是l在β內(nèi)的射影,m⊥l,則m⊥l;
③若m是平面α的一條斜線,A∉α,l為過A的一條動(dòng)直線,則可能有l(wèi)⊥m且l⊥α;
④若α⊥β,α⊥γ,則γ∥β
其中真命題的個(gè)數(shù)2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.36B.40C.44D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在圓錐曲線中,我們把過焦點(diǎn)最短的弦稱為通徑,那么拋物線y2=2px的通徑為4,則P=(  )
A.1B.4C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將參加夏令營的編號(hào)為1,2,3,…,52的52名學(xué)生,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知6號(hào),32號(hào),45號(hào)學(xué)生在樣本中,則樣本中還有一名學(xué)生的編號(hào)是19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線C:x2=ay(a>0)的焦點(diǎn)與雙曲線E:x2-2y2=2的右焦點(diǎn)的連線交C于第一象限內(nèi)的點(diǎn)M,若C在點(diǎn)M處的切線平行于E的一條漸近線,則實(shí)數(shù)a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在多面體EF-ABCD中,四邊形ABCD,ABEF均為直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,四邊形DCEF為平行四邊形,平面DCEF⊥平面ABCD.
(Ⅰ)求證:DF⊥平面ABCD;
(Ⅱ)若BC=CD=CE=$\frac{1}{2}$AB,求直線BF與平面ADF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.拋擲倆枚骰子得到的點(diǎn)數(shù)分別為x,y,求以下發(fā)生的概率,
(1)x+y為奇數(shù)
(2)2x+y<10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.cos(-600°)=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案