7.直線(xiàn)ax+by=1與圓x2+y2=$\frac{1}{4}$相交于不同的A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且|AB|<$\frac{\sqrt{2}}{2}$,則a2+b2-2a的取值范圍為( 。
A.(1,10+4$\sqrt{2}$)B.(1,6+3$\sqrt{2}$)C.(0,6+3$\sqrt{2}$)D.(0,8+4$\sqrt{2}$)

分析 由題意,圓心到直線(xiàn)的距離$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,確定4<a2+b2<8,表示以原點(diǎn)為圓心,2,2$\sqrt{2}$為半徑的圓環(huán).
a2+b2-2a=(a-1)2+b2-1,(a-1)2+b2表示(a,b)與(1,0)的距離的平方,其范圍為(1,(2$\sqrt{2}$+1)2),即可得出結(jié)論.

解答 解:由題意,圓心到直線(xiàn)的距離$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
∴$\frac{1}{2}$>$\frac{1}{\sqrt{{a}^{2}+^{2}}}$>$\frac{\sqrt{2}}{4}$,
∴4<a2+b2<8,
表示以原點(diǎn)為圓心,2,2$\sqrt{2}$為半徑的圓環(huán).
a2+b2-2a=(a-1)2+b2-1,
(a-1)2+b2表示(a,b)與(1,0)的距離的平方,其范圍為(1,(2$\sqrt{2}$+1)2),
∴a2+b2-2a的取值范圍為(0,8+4$\sqrt{2}$),
故選:D.

點(diǎn)評(píng) 本題考查直線(xiàn)與圓的位置關(guān)系,考查了點(diǎn)到直線(xiàn)的距離公式,訓(xùn)練了利用配方法,解答此題的關(guān)鍵在于確定4<a2+b2<8,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=$\sqrt{{x}^{2}+1}$-ax.
(1)當(dāng)a≥1時(shí),證明函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù);
(2)當(dāng)x∈[0,2]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$-lg(3x-1)的定義域用區(qū)間表示為$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=x2在區(qū)間[x0,x0+△x]上的變化率為a,與在x=x0處瞬時(shí)變化率b的關(guān)系是(  )
A.a>bB.a=bC.a<bD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:關(guān)于x的不等式x2+ax+b<0的解集為(1,2).求:關(guān)于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=$\sqrt{|sinx+cosx|-1}$的定義域是( 。
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[2kπ,2kπ+$\frac{π}{2}$](k∈Z)C.[-$\frac{π}{2}$+kπ,kπ](k∈Z)D.[-$\frac{π}{2}$+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.將下列三角函數(shù)化為0°~45°內(nèi)的角的三角函數(shù).
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知長(zhǎng)方體ABCD-A1B1C1D1的對(duì)稱(chēng)中心在坐標(biāo)原點(diǎn)為O,交于同一頂點(diǎn)的三個(gè)面分別平行于三個(gè)坐標(biāo)平面,其中頂點(diǎn)A(-2,-3,-1),求其他7個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比q≠1,設(shè)P=$\frac{1}{2}$(${log_{\frac{1}{2}}}{a_5}+{log_{\frac{1}{2}}}{a_7}$),Q=${log_{\frac{1}{2}}}\frac{{{a_3}+{a_9}}}{2}$,則P與Q的大小關(guān)系是( 。
A.P≥QB.P<QC.P≤QD.P>Q

查看答案和解析>>

同步練習(xí)冊(cè)答案