1.某次考試的第一大題是由10個(gè)判斷題組成,每個(gè)判斷題做對(duì)得2分,不做或做錯(cuò)得0分.小明做對(duì)每一題的概率為$\frac{3}{4}$,則小明第一大題得分的方差是$\frac{15}{8}$.

分析 根據(jù)題意,該模型符合n次獨(dú)立重復(fù)實(shí)驗(yàn)的應(yīng)用問題,由此求出對(duì)應(yīng)的方差.

解答 解:根據(jù)題意,該模型符合n次獨(dú)立重復(fù)實(shí)驗(yàn)的概率模型,
且n=10,p=$\frac{3}{4}$,
∴方差是D=nP(1-P)=10×$\frac{3}{4}$×$\frac{1}{4}$=$\frac{15}{8}$.
故答案為:$\frac{15}{8}$.

點(diǎn)評(píng) 本題考查了n次獨(dú)立重復(fù)實(shí)驗(yàn)的均值與方差的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級(jí)抽取了30名男生和20名女生的該學(xué)科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

(Ⅰ)(i)請(qǐng)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分非優(yōu)分總計(jì)
男生9       21      30       
女生11920
總計(jì)203050
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級(jí)該學(xué)科成績中任意抽取3名學(xué)生的成績,求至少2名學(xué)生的成績?yōu)閮?yōu)分的概率.
附:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}的公差為d,關(guān)于x的不等式${a_1}{x^2}+({\fracq0jpsdk{2}-{a_1}})x+c≥0$的解集為$[{\frac{1}{3},\frac{4}{5}}]$,則使數(shù)列{an}的前n項(xiàng)和Sn最小的正整數(shù)n的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=-1,an+1=an-3,則a4=(  )
A.-10B.-7C.-5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=|x-1|-|x|,設(shè)u=f($\frac{5}{16}$),v=f(u),s=f(v),則s的值為( 。
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-2y+1≥0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin($\frac{π}{4}$-x)cos($\frac{π}{4}$+x)的單調(diào)遞增區(qū)間是( 。
A.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈ZB.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z
C.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈ZD.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,S△ABC=$\frac{1}{2}$b2sinB,且bsinA-$\sqrt{3}$acosB=0,則$\frac{sinA+sinC}{sinB}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)X1~N(0,1),X2~N(1,1),X3~N(0,9),下列答案正確的是( 。
A.P(|X1|<1)=P(|X2|<1)=P(|X3|<1)B.P(|X1|<1)=P(|X2-1|<1)=P(|X3-1|<1)
C.P(|X1|<1)=P(|X2|<1)=P(|X3|<3)D.P(|X1|<1)=P(|X2-1|<1)=P(|X3|<3)

查看答案和解析>>

同步練習(xí)冊(cè)答案