20.關(guān)于x不等式x+|2x+3|≥3的解集是{x|x≤-6或x≥0}.

分析 由2x+3的符號(hào),把不等式轉(zhuǎn)化為$\left\{\begin{array}{l}{2x+3≥0}\\{x+2x+3≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{2x+3<0}\\{x-2x-3≥3}\end{array}\right.$,由此能求出不等式x+|2x+3|≥3的解集.

解答 解:∵x+|2x+3|≥3,
∴當(dāng)2x+3≥0時(shí),$\left\{\begin{array}{l}{2x+3≥0}\\{x+2x+3≥3}\end{array}\right.$,
解得x≥0,
當(dāng)2x+3<0時(shí),$\left\{\begin{array}{l}{2x+3<0}\\{x-2x-3≥3}\end{array}\right.$,
解得x≤-6.
∴不等式x+|2x+3|≥3的解集是:{x|x≤-6或x≥0}.
故答案為:{x|x≤-6或x≥0}.

點(diǎn)評(píng) 本題考查含絕對(duì)值不等式的解法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)fn(x)=(1+x)n,n∈N*
(1)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù);
(2)若h(x)=fn(x)+fn($\frac{1}{x}$),求h2011(x)在區(qū)間[$\frac{1}{3}$,2]上的最大值與最小值;
(3)證明:Cmm+2Cmm+1+3Cmm+2+…+nCmm+n-1=$\frac{(m+1)n+1}{m+2}$•Cm+1m+n(m,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知全集U=R,A={x|-2<x<2},B={x|x<-1或x>4},
(1)求A∩B
(2)求∁UB
(3)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等邊△ABC邊長(zhǎng)為4,動(dòng)點(diǎn)P滿足PA2+PB2=12,則線段PC長(zhǎng)度的取值范圍是[$2\sqrt{3}-\sqrt{2}$,$2\sqrt{3}+\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個(gè)正四棱臺(tái),其上、下底面均為正方形,邊長(zhǎng)分別為8cm和18cm,側(cè)棱長(zhǎng)為13cm,則其表面積為1012cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥0}\\{y≥x}\\{2x+y-6≥0}\end{array}\right.$,則z=x-2y的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列雙曲線的標(biāo)準(zhǔn)方程
(1)與雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$有公共焦點(diǎn),且過點(diǎn)(6$\sqrt{2}$,$\sqrt{6}$)的雙曲線
(2)以橢圓3x2+13y2=39的焦點(diǎn)為焦點(diǎn),以直線y=±$\frac{x}{2}$為漸近線的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tan α=2,則$\frac{sin2α+cos2(π-α)}{1+cos2α}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合M={x|y=$\sqrt{2-x}$+2},N={y|y=$\sqrt{2-x}$+2},則A∩B={2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案