分析 由已知及同角三角函數(shù)基本關系式可得:tanα=-4,利用同角三角函數(shù)基本關系式化簡代入即可得解;
解答 (本題滿分為12分)
解:由已知可得:sinα-2cosα=3sinα+6cosα,
可得:2sinα=-8cosα,解得:tanα=-4.
$(1)\frac{sinα+2cosα}{5cosα-sinα}=\frac{tanα+2}{5-tanα}=\frac{-4+2}{5+4}=-\frac{2}{9}$.$(2){({sinα+cosα})^2}=\frac{{{{sin}^2}α+{{cos}^2}α+2sinαcosα}}{{{{sin}^2}α+{{cos}^2}α}}=\frac{{{{tan}^2}α+1+2tanα}}{{{{tan}^2}+1}}=\frac{16+1-8}{16+1}=\frac{9}{17}$.
點評 本題主要考查了同角三角函數(shù)基本關系式的應用,考查了計算能力和轉化思想,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+y2=1 | B. | $\frac{{y}^{2}}{4}$+x2=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(lg0.5) | B. | f(lg0.5)>f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$ | ||
C. | f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1)>f(lg0.5) | D. | f(lg0.5)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com