分析 (1)根據(jù)$\frac{x}{2}$+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,k∈Z,求出x的范圍,即可確定出f(x)定義域;
(2)原式分子變形為sin2α+cos2α=1,分子分母除以cos2α,利用同角三角函數(shù)間基本關(guān)系化簡,將tanα的值代入計(jì)算即可求出值.
解答 解:(1)由$\frac{x}{2}$+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,k∈Z,即x≠2kπ+$\frac{π}{3}$,k∈Z,
則函數(shù)的定義域?yàn)閧x|x≠2kπ+$\frac{π}{3}$,k∈Z};
(2)∵tanα=3,
∴原式=$\frac{si{n}^{2}α+co{s}^{2}α}{2sinαcosα+si{n}^{2}α}$=$\frac{ta{n}^{2}α+1}{2tanα+ta{n}^{2}α}$=$\frac{10}{15}$=$\frac{2}{3}$.
點(diǎn)評 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{40}{3}$ | B. | $\frac{34}{3}$ | C. | $\frac{64}{3}$ | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$x | B. | $\frac{5}{6}$$\root{6}{x}$ | C. | $\frac{5}{6\root{6}{x}}$ | D. | $\frac{6}{5}$$\root{6}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com