18.如圖為某商場(chǎng)一天營(yíng)業(yè)額的扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖你能得到服裝鞋帽和百貨日雜共售出29000元.

分析 利用統(tǒng)計(jì)圖,求出副食品的比例,然后求解服裝鞋帽和百貨日雜共售出的金額.

解答 解:由題意可知:副食品的比例:10%.一天營(yíng)業(yè)額為:5800元.
服裝鞋帽和百貨日雜共售出:5×5800=29000元.
故答案為:29000

點(diǎn)評(píng) 本題考查統(tǒng)計(jì)圖的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2=2px(p>0)的弦PQ的中點(diǎn)為(x0,y0)(y0≠0),則弦PQ的斜率是( 。
A.$\frac{p}{{y}_{0}}$B.-$\frac{p}{{y}_{0}}$C.px0D.-px0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)在[a,b]上有定義,且對(duì)任意x1,x2∈[a,b],有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{1}{2}[f({x_1})+f({x_2})]$,則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,4]上具有性質(zhì)P,現(xiàn)給出如下命題:
①f(x)在[1,4]上的圖象是連續(xù)不斷的;
②f(x2)在[1,2]上具有性質(zhì)P;
③若f(x)在x=$\frac{5}{2}$處取得最大值1,則f(x)=1,x∈[1,4];
④對(duì)任意x1,x2,x3,x4∈[1,4],有$f(\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4})$≤$\frac{1}{4}[f({x_1})+f({x_2})+f({x_3})+f({x_4})]$.
其中正確命題的序號(hào)是( 。3O.
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-m|+|x+$\frac{4}{m}$|(m>0).
(Ⅰ)證明:f(x)≥4;
(Ⅱ)若f(2)<5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l經(jīng)過C(4,8),D(4,-4)兩點(diǎn),則l的傾斜角為( 。
A.銳角B.鈍角C.直角D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知F為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn),A1、A2為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),P為橢圓上任一點(diǎn),分別以PF、A1A2為直徑作圓,則兩圓的位置關(guān)系為( 。
A.相交B.相切C.相離D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的減函數(shù),A(0,1),B(4,-1)是其圖象上兩點(diǎn),那么|f(x)|<1的解集是( 。
A.(0,4)B.(-1,3)C.(-∞,0)∪(4,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=kx+b的圖象過點(diǎn)A(1,4),B(2,7).
(1)求實(shí)數(shù)的k,b值;
(2)證明當(dāng)x∈(-∞,+∞)時(shí),函數(shù)f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知M={x|x2+x-2>0},$N=\{x|\frac{2}{2-x}>1\}$,則M∩N=(  )
A.{x|1<x<2}B.{x|0<x<1}C.{x|x<-2或x>1}D.{x|-2<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案