5.若函數(shù)f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,\;(x<1)\\ \frac{a}{x},\;x≥1\end{array}$是(-∞,+∞)上的減函數(shù),則a的取值范圍是( 。
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$\frac{1}{6}≤a<\frac{1}{3}$D.$0<a<\frac{1}{3}$

分析 根據(jù)分段函數(shù)單調(diào)性的性質(zhì)建立不等式關(guān)系進(jìn)行求解即可.

解答 解:∵f(x)是減函數(shù),
∴$\left\{\begin{array}{l}{3a-1<0}\\{a>0}\\{3a-1+4a≥a}\end{array}\right.$,即$\left\{\begin{array}{l}{a<\frac{1}{3}}\\{a>0}\\{a≥\frac{1}{6}}\end{array}\right.$,
即$\frac{1}{6}≤a<\frac{1}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查分段函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)分段函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,$\frac{3π}{4}$),求sinθ•cosθ,sin2θ,cos2θ,sinθ,cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.不等式lg(2x-1)-lg3<0的解集為($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.(x3+$\frac{1}{x\sqrt{x}}$)9的展開式中的常數(shù)項(xiàng)為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,則數(shù)列{bn}的前10項(xiàng)和T10=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且${a_1}=1,{S_{n+1}}=3{S_n}+n+1,n∈{N^*}$.
(Ⅰ)求證:數(shù)列$\left\{{{a_n}+\frac{1}{2}}\right\}$是等比數(shù)列;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,n∈N*,證明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)y=loga(x+b)(a>0,a≠1)的圖象過(guò)兩點(diǎn)(-1,0)和(0,$\frac{1}{2}$),則實(shí)數(shù)a=4,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)A={y|y=x2+1,x∈R},$B=\left\{{x\left|y\right.=\left.{\sqrt{x-3}}\right\}}\right.$,則A∩B=[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=(x+a)(|x-a+1|+|x-3|)-2x+4a的圖象是中心對(duì)稱圖形,則實(shí)數(shù)a的值為( 。
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案