20.已知F1是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,點B的坐標為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,若$\overrightarrow{QP}$=4$\overrightarrow{P{F}_{1}}$,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{5}}{2}$D.2

分析 求出P,Q的坐標,利用$\overrightarrow{QP}$=4$\overrightarrow{P{F}_{1}}$,求出雙曲線C的離心率.

解答 解:由題意,kPQ=$\frac{c}$.
∴直線PQ為:y=$\frac{c}$(x+c),與y=$\frac{a}$x.聯(lián)立得:Q($\frac{ac}{c-a}$,$\frac{bc}{c-a}$);
與y=-$\frac{a}$x.聯(lián)立得:P(-$\frac{ac}{c+a}$,$\frac{bc}{c+a}$).
∵$\overrightarrow{QP}$=4$\overrightarrow{P{F}_{1}}$,
∴-$\frac{ac}{c+a}$-$\frac{ac}{c-a}$=4(-c+$\frac{ac}{c+a}$),
∴e=$\frac{c}{a}$=$\frac{3}{2}$.
故選:B.

點評 本題考查雙曲線C的離心率,考查學生的計算能力,確定P,Q的坐標是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.求直線x=0,x=2,y=0與二次函數(shù)曲線y=4x2+2x+1所圍成曲邊梯形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點M是左側(cè)面ADD1A1上的一個動點,滿足$\overrightarrow{B{C}_{1}}$•$\overrightarrow{BM}$=1,則$\overrightarrow{B{C}_{1}}$與$\overrightarrow{BM}$的夾角的最大值為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知a2+b2+c2=1,則ab+bc+ac的最大值為1,最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.a(chǎn)=log0.76,b=60.7,c=0.70.6,則a,b,c的大小關系為( 。
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知$\overrightarrow{a}$為單位向量,|$\overrightarrow$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|;
(3)若若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求若$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知全集R,集合M={x|x>1},N={x||x|≤2},則(∁RM)∩N等于( 。
A.(-2,1]B.[-2,1)C.[-2,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{12}$單位后,得到的圖象的函數(shù)解析式為( 。
A.y=cos(2x+$\frac{5π}{12}$)B.y=-sin2xC.y=cos(2x+$\frac{π}{4}$)D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知對數(shù)函數(shù)f(x)=logax在定義域上是減函數(shù).
(1)函數(shù)f(x)=1ogax的圖象經(jīng)過定點(1,0),若將這個定點移至原點,求所得函數(shù)的解析式;
(2)若f(a+2)<f(2a)<0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案