14.直線y=kx-1(k∈R)與圓(x-1)2+y2=4所截得的弦為AB,則|AB|的最小值是( 。
A.2$\sqrt{2}$B.2C.3D.4

分析 由題設(shè)知,當(dāng)直線AB過(guò)點(diǎn)M(0,-1),且與CM垂直時(shí),|AB|取最小值,求出|CM|,能求出|AB|的最小值.

解答 解:圓(x-1)2+y2=4的圓心坐標(biāo)為C(1,0),半徑為2
∵直線y=kx-1恒過(guò)點(diǎn)M(0,-1),
∴當(dāng)直線AB過(guò)點(diǎn)M(0,-1),且與CM垂直時(shí),|AB|取最小值,
∵|CM|=$\sqrt{2}$,
∴|AB|min=2$\sqrt{4-2}$=2$\sqrt{2}$,
故選:A.

點(diǎn)評(píng) 本題考查直線與圓的相交弦的最小值的求法,是中檔題,解題時(shí)要注意數(shù)形結(jié)合思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,則($\frac{x}{a}$+$\frac{1}{x}$+$\sqrt{2}$)4的展開(kāi)式中常數(shù)項(xiàng)為$\frac{23}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC的三邊a,b,c所對(duì)的角分別為A,B,C且sinA:sinB:sinC=2:3:4.若△ABC的面積為12$\sqrt{15}$,則△ABC的外接圓的半徑R=$\frac{32\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A(1,1,2),B(-1,2,1),O為坐標(biāo)原點(diǎn),則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角是( 。
A.0B.$\frac{π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)點(diǎn)(4,6)且與圓(x-2)2+(y-3)2=4相切的直線方程是5x-12y+77=0或x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知關(guān)于x的不等式ax2+bx+c>0解集為(1,3),則cx2+bx+a<0的解集為(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(2x)=4x-3,g(x)=x2-2x+5,求:
(1)f(x)的表達(dá)式;
(2)f[g(x)]的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}$AD.
(1)求證:平面PCD⊥平面PAC;
(2)設(shè)E是棱PD上一點(diǎn),且PE=$\frac{1}{3}$PD,求異面直線AE與PB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=2,Sn+2=2an,n∈N*
(1)求an;
(2)求證:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案