2.如圖邊長為2的正方形內(nèi)部有一塊不規(guī)則的區(qū)域E,若向該圖中隨機(jī)撒100顆豆子,經(jīng)清點(diǎn)落在E內(nèi)的有30顆,試估計(jì)E的面積為:1.2.

分析 先求出正方形的面積為22,設(shè)陰影部分的面積為x,由概率的幾何概型知$\frac{30}{100}=\frac{x}{{2}^{2}}$,由此能求出該陰影部分的面積.

解答 解:設(shè)陰影部分的面積為x,
由概率的幾何概型知,則$\frac{30}{100}=\frac{x}{{2}^{2}}$,
解得x=1.2.
故答案為:1.2.

點(diǎn)評 本題考查概率的性質(zhì)和應(yīng)用;每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在Rt△ABC中,AB⊥AC,則有AB2+AC2=BC2成立.拓展到空間,在直四面體P-ABC中,PA⊥PB、PB⊥PC、PC⊥PA.類比平面幾何的勾股定理,在直四面體P-ABC中可得到相應(yīng)的結(jié)論是$S_{△ABC}^2=S_{△PAB}^2+S_{△PBC}^2+S_{△PCA}^2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在四邊形ABCP中,線段AP與BC的延長線交于點(diǎn)D,已知AB=AC且A,B,C,P四點(diǎn)共圓.
(1)求證:AC•DP=BD•PC
(2)若△ABC是面積為4$\sqrt{3}$的等邊三角形,求AP•AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若[x]表示不超過x的最大整數(shù),例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x∈R),g(x)=log2015x,則函數(shù)h(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)是( 。
A.2016B.2015C.2014D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.觀察式子:$1+\frac{1}{{2}^{2}}<\frac{3}{2}$,$1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}$,$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{4}$,…,則可歸納出第n個(gè)式子為1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中,錯(cuò)誤的是( 。
A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交
B.平行于同一直線的兩個(gè)平面平行
C.平行于同一平面的兩個(gè)平面平行
D.一個(gè)平面與兩個(gè)平行平面相交,交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知奇函數(shù)f(x)的定義域?yàn)镽,若f(x+1)為偶函數(shù),且f(1)=1,則f(2016)+f(2015)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(lgx)=$\frac{1}{x}$,則f(1)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合P={x|y=$\sqrt{x+1}$},Q={y|y=$\sqrt{x+1}$},則P,Q的關(guān)系是( 。
A.P=QB.P?QC.Q?PD.P∩Q=∅

查看答案和解析>>

同步練習(xí)冊答案