16.在等比數(shù)列{an}中,
(1)a4=2,a7=8,求an;
(2)a2+a5=18,a3+a6=9,an=1,求n.

分析 (1)由已知求得公比,進(jìn)一步求出首項(xiàng),代入等比數(shù)列的通項(xiàng)公式得答案;
(2)由已知求得公比,進(jìn)一步求出首項(xiàng),代入等比數(shù)列的通項(xiàng)公式求得n值.

解答 解:(1)在等比數(shù)列{an}中,由a4=2,a7=8,
得${q}^{3}=\frac{{a}_{7}}{{a}_{4}}=\frac{8}{2}=4$,∴$q=\root{3}{4}$,
則${a}_{1}=\frac{{a}_{4}}{q}=\frac{2}{\root{3}{4}}=\root{3}{2}$,
則${a}_{n}=\root{3}{2}•(\root{3}{4})^{n-1}={2}^{\frac{2n-1}{3}}$;
(2)由a2+a5=18,a3+a6=9,
得$q=\frac{{a}_{3}+{a}_{6}}{{a}_{2}+{a}_{5}}=\frac{9}{18}=\frac{1}{2}$,
代入${a}_{1}q+{a}_{1}{q}^{4}=18$,得${a}_{1}(\frac{1}{2}+\frac{1}{16})=18$,即a1=32.
由an=${a}_{1}{q}^{n-1}=32•(\frac{1}{2})^{n-1}=1$,得n=6.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,在矩形ABCD中,AB=$\sqrt{3}$,BC=2,點(diǎn)E為BC的中點(diǎn),點(diǎn)F在邊CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{3}$,則($\overrightarrow{DF}$-$\overrightarrow{AD}$)•$\overrightarrow{FE}$的值是1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足4${\;}^{_{′}-1}$4${\;}^{_{2}-1}$…4${\;}^{_{n}-1}$=(an+1)${\;}^{_{n}}$(n∈N),求證:{bn}是等差數(shù)列;
(3)求證:1007$\frac{2}{3}$<$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{2016}}{{a}_{2017}}$<1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}為公差不為零的等差數(shù)列,S6=60,且滿足$a_6^2={a_1}•{a_{21}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_{n+1}}-{b_n}={a_n}(n∈{N^*})$,且b1=3,求數(shù)列$\{\frac{1}{b_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,多面體ABCDEF中,四邊形ABCD為菱形,且∠DAB=60°,EF∥AC,AD=2,EA=ED=EF=$\sqrt{3}$.
(1)求證:AE∥面BDF;
(2)求證:AD⊥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}滿足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1.(n∈N+)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知z=2+i,(i是虛數(shù)單位),z的共軛復(fù)數(shù)是$\overline z$,則$|(3-2z)•\overline z|$=( 。
A.5B.25C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 若bn=anlog2an,Sn=b1+b2+…+bn,求${S_n}-n•{2^{n+1}}+50<0$成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知a,b,c為不全相等的實(shí)數(shù),P=a2+b2+c2+3,Q=2(a+b+c),那么P與Q的大小關(guān)系是( 。
A.P>QB.P≥QC.P<QD.P≤Q

查看答案和解析>>

同步練習(xí)冊(cè)答案