3.正四棱錐P-ABCD的五個(gè)頂點(diǎn)在同一球面上,若該正四棱錐的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)2$\sqrt{6}$,則這個(gè)球的半徑為3.

分析 畫(huà)出圖形,正四棱錐P-ABCD的外接球的球心在它的高PO1上,記為O,求出PO1,OO1,解出球的半徑.

解答 解:正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記為O,PO=AO=R,PO1=4,OO1=R-4,或OO1=4-R(此時(shí)O在PO1的延長(zhǎng)線上),
在Rt△AO1O中,R2=8+(R-4)2得R=3,
故答案為:3、

點(diǎn)評(píng) 本題考查球的表面積,球的內(nèi)接體問(wèn)題,考查計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=lnx+\frac{a}{{2{x^2}}}(a>0)$.
(1)試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在區(qū)間[1,e2]上的最小值為2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則在該幾何體中,最長(zhǎng)的棱與最短的棱所成角的余弦值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知F是拋物線y2=4x的焦點(diǎn),過(guò)F作一直線l交拋物線于A,B兩點(diǎn),若$\overrightarrow{FB}$=3$\overrightarrow{AF}$,則直線l與坐標(biāo)軸圍成的三角形的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知拋物線x2=4y,過(guò)焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn)(點(diǎn)A在第一象限),若直線l的傾斜角為30°,則$\frac{|AF|}{|BF|}$等于( 。
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(0,c)處具有公共切線.設(shè)h(x)=f(x)-g(x).
(Ⅰ)求c的值,及a,b的關(guān)系式;
(Ⅱ)求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a≥0,若對(duì)于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.隨機(jī)變量X的分布列為
X-10123
P0.16$\frac{a}{10}$a2$\frac{a}{5}$0.3
(Ⅰ)求a的值;
(Ⅱ)求E(X);
(Ⅲ)若Y=2X-3,求E(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.“a=$\frac{1}{2}$”是“直線l1:(a+2)x+(a-2)y=1與直線l2:(a-2)x+(3a-4)y=2相互垂直”的充分不必要條件.(填充分必要、充分不必要、必要不充分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,過(guò)y軸正方向上一點(diǎn)C(0,c)任作一直線,與拋物線y=x2相交于A,B兩點(diǎn),一條垂直于x軸的直線分別與線段AB和直線l:y=-c交于點(diǎn)P,Q.
(1)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,求c的值;
(2)若c=1,P為線段AB的中點(diǎn),求證:直線QA與該拋物線有且僅有一個(gè)公共點(diǎn).
(3)若c=1,直線QA的斜率存在,且與該拋物線有且僅有一個(gè)公共點(diǎn),試問(wèn)P是否一定為線段AB的中點(diǎn)?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案