17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x∈[0,2)}\\{4-x,x∈[2,3)}\\{\frac{5}{2}-\frac{x}{2},x∈[3,5]}\end{array}\right.$,求f(x)在區(qū)間[0,5]上的定積分.

分析 根據(jù)定積分的法則計(jì)算即可

解答 解:f(x)=$\left\{\begin{array}{l}{x,x∈[0,2)}\\{4-x,x∈[2,3)}\\{\frac{5}{2}-\frac{x}{2},x∈[3,5]}\end{array}\right.$,
∴${∫}_{0}^{5}$f(x)dx=${∫}_{0}^{2}$xdx+${∫}_{2}^{3}$(4-x)dx+${∫}_{3}^{5}$($\frac{5}{2}$-$\frac{x}{2}$)dx=$\frac{1}{2}{x}^{2}$|${\;}_{0}^{2}$+(4x-$\frac{1}{2}{x}^{2}$)|${\;}_{2}^{3}$+($\frac{5}{2}$x-$\frac{1}{4}{x}^{2}$)|${\;}_{3}^{5}$=2+(12-$\frac{9}{2}$)-(8-2)+($\frac{25}{2}$-$\frac{25}{4}$)-($\frac{15}{2}$-$\frac{9}{4}$)=$\frac{9}{2}$

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算法則、定積分的運(yùn)算性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=2sin2(ωx+$\frac{π}{6}$)(ω>0)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]內(nèi)單調(diào)遞增,則ω的最大值是( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知不等式9ax+8≥$\frac{36x}{2{x}^{2}+1}$+1在[$\frac{1}{2}$,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{8}{9}$,+∞)B.(-∞,$\frac{8}{9}$)C.[$\frac{8}{9}$,+∞)D.(-∞,$\frac{8}{9}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.賓館有客房300間,當(dāng)每間房租金20元時(shí),正好全部租出去,若租金每提高1元.客房出租數(shù)就減少5間,求租金提高多少元時(shí),客房租金總收入最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知若z1、z2是非零復(fù)數(shù),且|z1+z2|=|z1-z2|.求證:$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在等差數(shù)列{an}中,已知$\frac{{S}_{100}}{{S}_{10}}$=100,那么$\frac{{a}_{100}}{{a}_{10}}$=$\frac{199}{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=cos(ωx+φ),(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{6}$)=1.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.過(guò)拋物線y2=8x的焦點(diǎn)作直線交拋物線于A(x1,x2)、B(x2,y2)兩點(diǎn),若|AB|=16,則x1+x2=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)f(x)在定義域內(nèi)滿足:(1)對(duì)于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);(2)存在正數(shù)M,使得|f(x)|≤M,則稱函數(shù)f(x)為“單通道函數(shù)”,給出以下4個(gè)函數(shù):
①$f(x)=sin(x+\frac{π}{4})+cos(x+\frac{π}{4})$,x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{-x},-1≤x≤0}\\{lo{g}_{\frac{1}{2}}(x-1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有( 。
A.①③④B.①②④C.①③D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案